Model for Environmental Assessment of Container Ship Transport

By Hans Otto Holmegaard Kristensen Senior researcher Technical University of Denmark

DTU Mechanical Engineering

Department of Mechanical Engineering

2006 – EMMA MAERSK (14770 TEU)

3 DTU Mechanical Engineering, Technical University of Denmark

Overview of presentation

- 1. Basic principles of model
- 2. Identification of critical parameters which influence EEDI
- 3. Basic principles of calculation model
- 4. The most important parameter: SPEED OF THE SHIP
- 5. Result of parameter analysis
- 6. Possible EEDI improvements
- 7. Summary/conclusion

EEDI definition

The Energy Efficiency Design Index (EEDI) is a measure of the CO₂ efficiency of a ship. It is calculated according to the following formula in its most simple formulation:

$$EEDI = \frac{P_{ME} \times SFC_{ME} \times C_{FME} + P_{AE} \times SFC_{AE} \times C_{FAE}}{Deadweight \times Speed}$$

 P_{ME} and P_{AE} is main engine and auxiliary engine power

The basic principle of EEDI is that it expresses the CO₂ emissions per unit of the transport work of the ship.

SFC is the certified specific fuel consumption [g/kW/hour] of the engines.

 C_{F} is a non-dimensional conversion factor between fuel consumption and CO_2 emission

Main objective: Minimise EEDI

Constant x P_{ME} EEDI =

Capacity x Speed

EEDI base line (MEPC 60/4/14)

Oil consumption	Engine power x specific oil cons.
Transport unit	Transport capacity x speed

Calculation methods:

- 1. 'Bottom up' (pure statistical method)
- 2. 'Top down method' (model calculation naval architechtual method)

First calculate ship length, L, as function of cargo capacity, C

H

On basis of statistical data calculate the ship's dimensions as functions of ship length, L

 $\begin{array}{l} Beam = B = f_1(L)\\ Draft = T = f_2(L)\\ Depth = D = f_3(L)\\ Light ship weight = M = f_4(L)\\ Service speed = V = f_5(L)\\ Auxiliary machinery power = Pa = f_6(L) \end{array}$

Propulsion power, Pf, is calculated on the basis of main dimensions, cargo capacity, C, and utilization fraction, U (actual cargo/maximum cargo capacity)

propulsion power and energy consumption can be determined

Panamax ships – Lpp versus TEU capacity

Maximum draught versus Lpp

Draught [m]

Maximum DWT/TEU versus Lpp

Dwt per TEU

Machinery weight for container ships

Environmental Assessment of Container Ship 01/12/2010 Transport

Slenderness ratio – Lpp/Displ.volumue^{1/3}

Lpp/D^{1/3}

Speed

Speed exponent N

17 DTU Mechanical Engineering, Technical University of Denmark

DTU

EEDI and speed

Influence of speed on EEDI

EEDI reduction by increased ship length

DTU

EEDI reduction by changed steel weight

DTU

 Ξ

Obtainable EEDI reductions

Design option for improvement of EEDI		8000 TEU	12000 TEU
Ship designed for normal service speed with 10 % sea margin on resistance and ME engine running 90 % MCR in service condition		0	0
Ship designed for normal service speed with NO sea margin on resistance and ME engine running 90 % MCR in service condition		8	8
Ship designed for normal service speed with NO sea margin on resistance and derated ME engine running 100 % in service condition		17	16
5 % lengthened ship designed for normal service speed with NO sea margin on resistance and derated ME engine running 100 % MCR in service condition		22	21
5 % lengthened ship designed for 10 % speed redution with NO sea margin on resistance and derated ME engine running 100 % MCR in service condition		39	37
5 % lengthened ship designed for 10 % speed redution with NO sea margin on resistance and derated ME engine running 100 % MCR in service condition. 3 % steel weight reduction		40	38
5 % lengthened ship designed for 10 % speed redution with NO sea margin on resistance and derated ME engine running 100 % MCR in service condition. 3 % steel weight reduction and 5 % improved propeller efficiency		42	41

Summary of EEDI reductions (No change of sea margin)

Option 1:

Use of derated engine

3 % steel weight optimization

5 % propulsion improvement

20 – 23 % EEDI reduction

Option 2: Use of derated engine 3 % steel weight optimization 5 % propulsion improvement 10 % speed reduction

37 – 42 % EEDI reduction

ΠΤΠ

CO₂ emissions for ships versus trucks

CO₂ emissions for ships versus trucks

CO₂ emissions for container ships versus trucks

CO₂ emissions for ships versus trucks

12 m truck carrying 24 t cargo
Ro-Ro cargo ships (fully loaded)

CO₂ emissions for Ro-Ro cargo ships versus trucks

Thank you !

27 DTU Mechanical Engineering, Technical University of Denmark