IALA GUIDELINE

1062

THE ESTABLISHMENT OF AIS AS AN AID TO NAVIGATION

Edition 1.0
December 2008
Revisions to this IALA Document are to be noted in the table prior to the issue of a revised document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Page / Section Revised</th>
<th>Requirement for Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

1. GENERAL ... 5
2. OBJECTIVE ... 5
3. SCOPE .. 6
4. FUNCTION OF AIS AtoN .. 6
5. VDL CONSIDERATIONS ... 6
6. DEFINITIONS OF AIS AtoN AND EXAMPLES OF USE ... 7
 6.1. Real (Physical) AIS AtoN ... 7
 6.2. Synthetic AIS AtoN ... 7
 6.2.1. Monitored ... 7
 6.2.2. Predicted ... 8
 6.3. Virtual .. 8
 6.4. Chained AIS AtoN ... 8
7. ACCESSING THE VDL ... 8
8. CRITERIA FOR PROVIDING AIS AtoN TO ASSIST NAVIGATION ... 9
 8.1. Real AIS AtoN ... 9
 8.1.1. Lighthouses and Beacons ... 9
 8.1.2. Buoys and Major Floating Aids .. 9
 8.2. Virtual AIS AtoN ... 9
9. ADDITIONAL APPLICATIONS OF AIS AtoN ... 10
 9.1. Monitoring ... 10
 9.2. Data Collection ... 10
 9.3. Networking .. 10
 9.4. General considerations .. 11
10. AIS AtoN MESSAGE USE .. 12
11. DISPLAY OF AIS AtoN AND SYMBOLOGY .. 12
12. ACRONYMS .. 12
13. REFERENCES ... 13
ANNEX A FUNCTION OF VIRTUAL AtoN AIS ... 14
ANNEX B DESCRIPTION OF AIS AtoN STATIONS .. 15
ANNEX C SUMMARY OF CURRENT MESSAGE TYPES ... 16

List of Tables

Table 1 Overview of elements to consider for AIS AtoN ... 12
List of Figures

Figure 1 Flow chart for decision process, AIS AtoN

11
1. GENERAL

IALA Recommendation A-126 on the Use of the Automatic Identification System (AIS) in Marine Aids to Navigation provides detailed information on the type of AIS AtoN services that may be provided. The Recommendation states that an AIS transponder could provide information and data that could:

- be used as an aid to navigation;
- complement existing aids to navigation;
- monitor the performance of aids to navigation;
- monitor the ‘on station’ position of floating aids to navigation;
- provide identity, state of ‘health’ and other navigational information such as meteorological and hydrological data, if available, to ships and shore authorities;
- be used to assess traffic type and patterns to assist in providing the appropriate level of service and mix of aids to navigation.

Further, IALA Recommendation A-126 recommends that ‘National Members and other appropriate authorities providing marine aids to navigation services, use appropriate AIS units as part of their marine aid to navigation services for the provision of information data to shipping and monitoring purposes.

In this manner, IALA has recognised that AIS can be applied to AtoN to further improve and enhance services to mariners as well as assisting AtoN authorities in ensuring that the provision of such aids to navigation as the volume of traffic justifies and the degree of risk requires, as stated in SOLAS, Chapter V, Reg13 ‘Establishment and operation of aids to navigation’.

The Contracting Government is to ‘undertake to arrange for information relating to aids to navigation to be made available to all concerned, and AIS provides a means of promulgating near-real time information on aids to navigation’ (SOLAS, Chapter V, Reg13, clause 3).

It needs to be noted that as of the date of issue of this Guideline, the International Maritime Organization (IMO) is continuing development work on the application of AIS binary messages. The outcomes of this continuing development may require this Guideline to be reviewed and updated in the future.

2. OBJECTIVE

When deploying AIS AtoN it is important to bear in mind that not all vessels are equipped with AIS. In addition, for those vessels that are AIS equipped, the display of AIS data can range from no display, or limited display on some AIS Class B units, to the use of minimum keyboard display (MKD) on some AIS Class A units to full ECDIS and Radar overlay. In the absence of ECDIS or Radar overlay users will not be able to fully use AIS AtoN functionality.

The potential to display AIS AtoN data will increase in the future, as all Radars for SOLAS vessels fitted from 1 July 2008 must be able to display AIS data.

It is also very important when considering deploying AIS AtoN to bear in mind the mariner’s need of for appropriate, relevant, accurate and unambiguous information. Particular care must be exercised with the activation and promulgation of virtual AIS AtoN so as to avoid errors, particularly errors in position, and to avoid the unintentional creation of situations where mariners could be faced with too much information, irrelevant information, or information that results in confusion or distraction.

The criteria for the use of AIS as an AtoN should be based on the navigational requirement derived from the assessment of risk.

There is a distinction between the application of AIS as an AtoN to assist in safe navigation and other applications of interest to the AtoN authority, such as AtoN performance monitoring.
3. SCOPE

This guideline identifies general criteria to assist AtoN authorities in determining whether AIS AtoN functionality should be provided and, if so, what approach should be taken to establish the AIS AtoN. This guideline should be read in conjunction with IALA Recommendation A-126, ITU Recommendation M.1371 and the relevant references as provided in Section 12.

This document does not provide advice to the mariner on the use of AIS nor should it be considered a comprehensive source of information on AIS regulations and specifications.

4. FUNCTION OF AIS AtoN

The use of AIS as an AtoN can provide the following services to AIS equipped vessels: (this is not priority list)

- provide identification of the AtoN in all weather conditions;
- complement existing signals from AtoN (e.g. Racon);
- transmit accurate positions of floating AtoN;
- indicate if a floating AtoN is off position;
- mark or delineate tracks, routes, areas, and limits (for example, areas to be avoided and Traffic Separation Schemes (TSS));
- mark offshore structures (for example, wind turbines, wave and tidal energy devices, oil and gas platforms);
- provide weather, tidal, and sea state data;
- provide additional AtoN capability through use of virtual AIS AtoN where installation of physical AtoN is technically or economically difficult;
- indicate AtoN status;
- provide an accurate position for fixed AtoN which act as reference targets for verifying radar.

In addition, the use of AIS as an AtoN can provide a number of benefits to the AtoN authority:

- monitor the status of an AtoN;
- track AtoN that are off position;
- assist in the identification of ships involved in collisions with AtoN through provision of exact AtoN position data;
- gather real-time (or near real-time) information on the ‘state of health’ of an AtoN;
- remotely control changes in AtoN parameters (if so equipped);
- provide statistics on reliability of AtoN;
- extend the coverage (range) of AIS monitoring;
- enable timely marking of new wrecks and dangers and identify temporary recommended routes through the use of virtual AIS AtoN;
- monitor the status of other support equipment at the site.

5. VDL CONSIDERATIONS

As noted in IALA Recommendation A-126, an authority planning the application of AIS for AtoN should bear in mind the message capacity of the VHF data link (VDL).
In areas of high VDL activity, for example crowded shipping areas, transmission of AIS information from non-shipborne units should be kept to a level that will avoid overloading the VDL. The Competent Authority should consider increasing the reporting interval of AtoN AIS messages to reduce congestion while ensuring that the effectiveness of the transmission is not decreased.

6. DEFINITIONS OF AIS AtoN AND EXAMPLES OF USE

The use of AIS AtoN can vary from the provision of an actual unit on a physical AtoN to the transmission of a ‘synthetic’ or ‘virtual’ AtoN by an AIS base station, where they fall within the footprint of the base station. As with all AIS AtoN, these units should be established taking into account the needs of all waterway users – SOLAS and non-SOLAS.

Whenever considering the use of virtual AIS AtoN extreme care must be taken to avoid errors, particularly errors in position, and to avoid the creation of situations where mariners may be faced with too much information, irrelevant information, or information that results in confusion or distraction. Exercising such care will require the development and use of strict procedures and protocols that include verification of the appropriateness of the selected AIS AtoN and its accuracy.

6.1. REAL (PHYSICAL) AIS AtoN

A ‘real’ AIS AtoN is one that is physically located on the AtoN. This unit transmits:
- Message 21 – identification of AtoN and current geographical position status;
- Message 8 – meteorological and hydrological data or other IMO message;
- Message 21 and 14 – hazards to navigation;
- Message 6 – AtoN monitoring message;

There are three types of real AIS AtoN:
- Type 1 – transmit only station;
- Type 2 – similar to type 1, it includes a receiver for remote configuration;
- Type 3 – full transmit and receive station.

All three station types are capable of switching off and ‘sleeping’ between transmissions to conserve power use. It may be appropriate to use real AIS AtoN on existing aids to navigation to realize benefits as identified in Section 3. The power requirements for AIS AtoN need to be taken into account when looking to install on floating AtoN or on fixed AtoN in remote areas.

IEC 62320-2 provides the various capabilities of real AIS AtoN.

6.2. SYNTHETIC AIS AtoN

There may be times when, for practical and/or economic reasons it is not appropriate to fit a real AIS to an AtoN. In these instances, consideration should be given to the use of ‘Synthetic’ AIS AtoN. There are 2 types of Synthetic AIS AtoN – ‘Monitored Synthetic AIS AtoN’ and ‘Predicted Synthetic AIS AtoN’.

6.2.1. MONITORED

A ‘monitored’ synthetic AIS AtoN is transmitted as a Message 21 from an AIS Base Station located in the vicinity of the AIS AtoN. In this instance, the AtoN physically exists, however there does not have to be a real AIS AtoN unit. The communication between the AtoN and the AIS shall confirm the location and status of the AtoN.

Possible areas where it may be appropriate to use ‘Monitored Synthetic AIS AtoN’ may include:
- an existing monitoring system to transmit the AtoN’s status via a base station;
feeding meteorological / hydrological data via a base station.

6.2.2. **PREDICTED**

A ‘predicted’ synthetic AIS AtoN is transmitted as a Message 21 from an AIS Station located remotely from the AtoN. The AtoN exists, but there is no monitoring to confirm either location or status. Only a monitored synthetic AIS AtoN can ensure the integrity of the floating AtoN, therefore the use of predicted synthetic AIS AtoN is not recommended for use on floating AtoN.

Possible areas where it may be appropriate to use ‘Predicted Synthetic AIS AtoN’ may include:

- fixed AtoN (e.g. lighthouses, beacons);
- fixed hazards to navigation (e.g. fish farms, wind turbines, platforms)

6.3. **VIRTUAL**

A ‘virtual AIS AtoN’ is transmitted as a message 21 for an AtoN that does not physically exist.

Virtual AIS AtoN are used where it is not physically possible or feasible to put the real AtoN on station, examples include ice conditions, new wrecks and dangers, etc. Possible areas where it may be appropriate to use ‘Virtual AIS AtoN’ are provided in more detail in ANNEX A and may include:

- replace existing buoys or augment existing buoyage to increase safety of navigation;
- provide an AtoN when a physical AtoN is temporarily removed;
- mark new danger or obstruction;
- indicate deep water channels;
- indicate a temporary recommended fairway;
- indicate landfall or some other key point of interest;
- identify hydrographic survey areas;
- delineate exclusion zones / SAR or pollution zones.

6.4. **CHAINED AIS AtoN**

A chain of AIS AtoN Stations allows for communication from an AIS Base Station to AIS AtoN Stations that are remotely located and unable to communicate directly with the base station. Messages are passed from station to station until the intended recipient is reached.

The concept requires an AIS AtoN Station to have knowledge of other AIS AtoN Stations in the chain, namely its parent and all children below it in the chain.

A ‘parent station’ is a station that is in the direction of the base station. A ‘child station’ is a station that is directed away from a base station. In order to prevent unnecessary retransmission of the messages, each AIS AtoN Station in a chain may have only one parent, but may have multiple children (this includes all synthetic and virtual AIS AtoN).

7. **ACCESSING THE VDL**

As with all AIS units, AIS AtoN require MMSI numbers to access the VDL.

The numbering format for AIS AtoN is in accordance with ITU-R M585-4, Annex 4. This number is a nine-digit unique number using the format 9192M3I4D5X6X7X8X9 where the digits 3, 4 and 5 represent the MID and X is any figure from 0 to 9. In this format, the MID represents the territory or geographical area of the administration assigning the call identity for the navigational aid.
The administration may use the sixth digit to differentiate between certain specific uses of the MMSI, as shown in the example applications below:

1 99MID1XXX Physical AIS AtoN.
2 99MID6XXX Virtual AIS AtoN.

Synthetic AIS AtoN are identified through a flagged element of the MMSI configuration command.

8. CRITERIA FOR PROVIDING AIS AtoN TO ASSIST NAVIGATION

The criteria for fitting AIS to any AtoN should be based on the navigational requirement derived from the assessment of risk. AIS messages for an AtoN may be generated from information derived from the AtoN itself and broadcast directly from the AtoN, or broadcast from an AIS unit not located on the AtoN – i.e. a transmitting AIS base station.

8.1. REAL AIS AtoN

8.1.1. LIGHTHOUSES AND BEACONS

The primary purpose of providing AIS AtoN functionality to lighthouses and beacons is to provide the mariner with a fixed point of reference on the shore, and to confirm the functionality of other AtoN provided on the station. Such a point of reference is the e-Navigation equivalent of the physical station and is of assistance to the mariner in identifying a particular point of land, for spatial awareness, in taking bearings or distances for position confirmation, or in laying off parallel index lines. The provision of AtoN functionality information gives advance information to the mariner on whether key AtoN are performing correctly and allows for revision of the passage plan if required.

8.1.1.1. Criteria

AIS AtoN functionality should be provided on Lighthouses and Beacons where a navigational assessment identifies the requirement set out above. Typical locations for consideration would include offshore stations, headland stations, landfall stations, stations that are commonly used as waypoints, stations that mark points on featureless coastlines, or isolated dangers.

8.1.2. BUOYS AND MAJOR FLOATING AIDS

In addition to the point of reference and AtoN information purposes described above for fixed AtoN the provision of AIS AtoN functionality on floating AtoN such as buoys and Major Floating Aids (MFA) provides confirmation of the floating AtoN position. Confirmation of position provides the mariner with an assurance that the AtoN can be used, improves spatial awareness, enables bearings and distances for position confirmation, or in laying off parallel index lines. Advance confirmation of the position of floating AtoN is a significant improvement in the service available to the mariner.

8.1.2.1. Criteria

An important consideration is to identify high risk areas where, in poor conditions, AIS can improve the conspicuity of AtoN. The importance of the floating AtoN in the navigational solution is the key to assessing need for provision of AIS AtoN functionality. Therefore, it is likely that all Major Floating Aids (MFA) and Buos of Primary Navigation Significance (BPNS) will be AIS equipped. Of the remaining floating AtoN, typical locations for consideration would include gateway buoys at the approach to narrow channels, buoys that are commonly used as waypoints, buoys marking isolated dangers, buoys marking the extremities of shoal areas and buoys that are critical to the mariner’s spatial awareness.

8.2. VIRTUAL AIS AtoN

Virtual AIS AtoN are used where it is not physically possible to put the real AtoN on station, examples include ice conditions, new wrecks and dangers, etc. or where additional AtoN can be provided to enhance safety of
navigation. Virtual AtoN may also have a future role in replacing some MFA or buoys and in providing AtoN to meet the needs of special craft such as Wing-In-Ground (WIG) vessels.

8.2.1.1. Criteria

The criteria for use of virtual AIS will be influenced by the practicality of providing a physical AtoN and Real or Synthetic AIS. Where physical AtoN cannot be provided, for example in ice conditions, virtual AIS AtoN can contribute to reducing the risk and provide additional information for the user. The need to rapidly mark wrecks and other new dangers with virtual AIS AtoN, often in advance of laying physical AtoN, will be based on an assessment of the danger posed to shipping in the area. The criteria for replacement of existing AtoN with virtual AtoN will involve an assessment of the navigational value of the physical characteristics. Typical locations would include deepwater AtoN intended primarily for SOLAS Convention vessels.

9. ADDITIONAL APPLICATIONS OF AIS AtoN

An AtoN Authority can gain benefit from the provision of AIS AtoN with regards to monitoring of aids to navigation, data collection and networking.

In establishing an AIS station, consideration should be given to future as well as present requirements. When deciding to implement AIS AtoN there are a series of steps / elements to be considered, as outlined in Figure 1. Each stage has a number of options and some key points to keep in mind in the process are also indicated.

9.1. MONITORING

There is a wide range of possible means of monitoring AtoN. These range from physical observation, radar coverage, and electronic reporting through to full telemetry control systems. Whether an AIS AtoN Station is required for navigational purposes or not, AIS may still be used as an AtoN monitoring and networking tool.

Where AIS equipment at the AtoN is used for monitoring, consideration must be given to the possibility of the failure or the AIS itself while the AtoN continues to function. If a secondary monitoring system is available, any AIS messages being transmitted to the mariner may still be transmitted from an adjacent station as synthesised messages.

Where there is no AtoN requirement, the criteria for using AIS as an alternative means of monitoring will centre on cost, reliability and the value attached to the additional functionality available from the various systems.

9.2. DATA COLLECTION

AIS AtoN can collect and store data regarding the activity on the VDL. AIS AtoN can also be chained in a parent / child system to extend coverage range and enable data collection throughout a navigational area.

9.3. NETWORKING

Networks of AIS Base Stations can provide a useful means of monitoring the integrity of transmitted AIS messages and for local storage of data.

The availability of detailed AIS vessel track information will contribute significantly to the navigational review process.

Where an AIS Base Station is being provided as part of the AtoN requirement, consideration should be given to utilisation of the station for monitoring of other AtoN in the area and for network, data storage and forwarding purposes as outlined in IALA Guideline 1050 on the Management and Monitoring of AIS Information. The criteria in this case are likely to centre on communications costs and reliability. While AIS data can be secured using time or event generated polling on dial-up lines, live streaming over broadband or similar high speed lines is preferred.
Risk Analysis indicates requirement for AtoN

Is a physical AtoN appropriate for location identified? Yes | No

Is AIS AtoN required? Yes | No

Install AtoN without AIS

Verify location and requirement

Synthetic

Which type of AIS AtoN – Real or Synthetic? Yes | No

Real

Verify location in coverage of an AIS base station? Yes | No

Is it possible to install AIS base station to cover location? Yes | No

Install AIS base station

Verify message(s) to transmit from AIS Base Station

Transmit virtual or synthetic AIS AtoN

Determine type of real AIS AtoN – type 1, 2 or 3

RATDMA

Type 3

FATDMA possible? Yes | No

Determine FATDMA slot

Install AIS AtoN

9.4. GENERAL CONSIDERATIONS

A number of elements to consider when determining if an AIS AtoN is required include:

- present use of the VHF data link (VDL) and possible impact on the VDL by the use of an AIS AtoN;
- category of AtoN / criticality for navigation;
- use of AIS AtoN for way points, identifying isolated danger or delineating TSS;
- user requirements (e.g. High Speed Craft);
- additional functionality (e.g. met./ hydro. & DGNSS).

There are different options for the use of AIS AtoN.

Overview of elements to consider for AIS AtoN – provides an overview of possible uses for real, synthetic or virtual AIS AtoN.
Table 1 Overview of elements to consider for AIS AtoN

<table>
<thead>
<tr>
<th>Element to be addressed</th>
<th>Real</th>
<th>Synthetic</th>
<th>Virtual</th>
<th>Chained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low power availability at site</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficult to access site</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space limitations on site</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement for remote monitoring</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Additional functionality – met./hydro. Data, DGNSS; etc.</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Location – difficult Environmental conditions (including tide / current; cyclone /hurricane; extreme temperature)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need for spatial awareness</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Waterway use for SOLAS vessels only</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Waterway use mixed vessels</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Temporary marking of new danger / wreck</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Extend range of AIS system</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

10. **AIS AtoN MESSAGE USE**

AIS Message 21 is the primary AIS AtoN information message. This message provides details of the identity, position and status of the AtoN and will warn the mariner if any of the AtoN functions are not performing correctly. In addition, there are a number of other messages that can be used with AIS AtoN, enabling additional information to be transmitted to the mariner and also providing the AtoN authority with status and monitoring capabilities.

ITU-R M.1371 defines the AIS messages used, and IEC 62320 provides a summary of the AIS AtoN station messages. A summary of Message Types (current at date of publication) is available at ANNEX C.

11. **DISPLAY OF AIS AtoN AND SYMBOLOGY**

Guidelines for display of AIS AtoN are provided by IMO in IMO SN/Circ.243 Guideline on AIS Symbology. This symbology relates to display on Radar, ECDIS or other similar systems and is based on the use of a diamond symbol.

IEC 62288 also sets out similar AIS Display System symbology and provides for the use of a ‘V’ symbol for virtual AIS in addition to the basic diamond symbol.

AIS symbology on navigational charts is governed by IHO standards.

Particular issues arise in relation to virtual AIS. Effective utilization of virtual AIS needs an internationally accepted standard on symbols defined by type so that the user can clearly identify the AtoN area of interest.

12. **ACRONYMS**

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>Automatic Identification System</td>
</tr>
<tr>
<td>AtoN</td>
<td>Aid(s) to Navigation</td>
</tr>
<tr>
<td>BPNS</td>
<td>Buoys of Primary Navigation Significance</td>
</tr>
<tr>
<td>CSTDMA</td>
<td>Carrier Sense Time Division Management</td>
</tr>
<tr>
<td>DGNSS</td>
<td>Differential Global Navigation Satellite System</td>
</tr>
<tr>
<td>ECDIS</td>
<td>Electronic Chart Display Information System</td>
</tr>
<tr>
<td>EPFS</td>
<td>Electronic Position Fixing System</td>
</tr>
</tbody>
</table>
FATDMA Fixed Access Time Division Multiple Access
Hydro. Hydrological
IALA International Association of Marine Aids to Navigation and Lighthouse Authorities
IEC International Electrotechnical Commission
IMO International Maritime Organization
ITU-R International Telecommunication Union-Radiocommunication Sector
Met. Meteorological
MFA Major Floating Aids
MID Maritime Identification Digit (first three digits of the MMSI)
MKD Minimum Keyboard Display
MMSI Maritime Mobile Service Identity
Racon Radar beacon
RATDMA Random Access Time Division Management
SAR Search and Rescue
SN/Circ. Safety of Navigation Circular (IMO)
SOLAS International Convention for the Safety of Life at Sea, (IMO)
TSS Traffic Separation Scheme
UTC Universal time co-ordinated/ Universal Co-ordinated Time
VDL VHF Data Link
VHF Very High Frequency
WIG Wing-in-Ground

13. REFERENCES

[3] IALA Guideline 1050
[7] IEC 62320-2 AIS AtoN
[8] IEC 62288-ECDIS
Function of Virtual AtoN AIS

<table>
<thead>
<tr>
<th>Application Mode</th>
<th>Function</th>
<th>Description</th>
<th>Type of Virtual AtoN AIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Marking of Obstacles</td>
<td>Marking of Shoals and Reefs</td>
<td>Virtual AtoN can be effectively utilized where it is difficult to place a physical AtoN due to sea state, winds, or other environmental or ecological conditions. A clear marking of the shoals and/or reefs will improve safety of navigation.</td>
<td>Isolated Danger Marks</td>
</tr>
<tr>
<td>Permanent Marking (navigation support)</td>
<td>Marking of Fairway Limits</td>
<td>Virtual AtoN can be effectively utilized where lighted buoys cannot be installed for some reason (i.e. sharing of waterway). A clear marking of the fairway limits will serve for orderly flow of marine traffic and improved safety of navigation.</td>
<td>Lateral Marks</td>
</tr>
<tr>
<td></td>
<td>Marking of Fairways</td>
<td>Virtual AtoN can be effectively utilized where a physical AtoN placement is difficult due to the water depth, seabed, etc. A clear marking of the fairway will improve safety of navigation.</td>
<td>Lateral Marks, Safe Water Marks</td>
</tr>
<tr>
<td></td>
<td>Marking of Fairways & Marking of the Limits of Safe Water</td>
<td>Virtual AtoN can be effectively utilized in approaches to a harbour entrance where a ship changes its course and where it is difficult to install a physical AtoN. A clear marking of the point of approach will serve for an orderly flow of ships at a entrance and improve safety and efficiency of shipping.</td>
<td>Safe Water Marks</td>
</tr>
<tr>
<td>Temporary Marking</td>
<td>Marking of a Navigation Restricted Areas</td>
<td>Virtual AtoN can be effectively utilized when navigation restriction is required due to e.g., marine accidents or when marking of a wreck. A temporary navigation restriction can prevent subsequent incidents from developing.</td>
<td>Cardinal Marks, Special Marks</td>
</tr>
<tr>
<td></td>
<td>Designation of Temporarily Recommendable Fairways</td>
<td>Virtual AtoN AIS can be effectively utilized for indication of fairways when a large scale disaster hits the area. A clear marking of temporarily recommendable fairways will be expected to serve for the relief ships dispatched to the site and to support safe and effective relief activities.</td>
<td>Lateral Marks, Safe Water Marks</td>
</tr>
<tr>
<td></td>
<td>Marking of Aids to Navigation that are malfunctioning or off position</td>
<td>Virtual AtoN AIS can be effectively utilized when a physical AtoN has lost ability to perform regular functions due to a natural disaster. When a physical AtoN lost ability to perform regular functions due to natural disasters, recovery actions are required at the earliest opportunity. Virtual AtoN can respond to the circumstance even if the actions by personnel cannot be achieved due to meteorological and/or hydrological conditions, and keep the influence of the trouble reach to ships in navigation at a minimum level.</td>
<td>Cardinal Marks, Lateral Marks, Isolated Danger Marks, Safe Water Marks, Special Marks, Other Position Marks</td>
</tr>
</tbody>
</table>
ANNEX B DESCRIPTION OF AIS AtoN STATIONS

Reference IEC 62320-2

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Type 1 AIS AtoN Station</th>
<th>Type 2 AIS AtoN Station</th>
<th>Type 3 AIS AtoN Station</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDL Receiver</td>
<td>No Receiver</td>
<td>Receiver for</td>
<td>2 Receiving processes</td>
<td>21 plus one or more of 6, 8, 12, 14, 25 and other appropriate messages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>control functions only</td>
<td>for autonomous mode</td>
<td>(Types 1, 2 and 3)</td>
</tr>
<tr>
<td>Transmitted Messages</td>
<td>21</td>
<td></td>
<td></td>
<td>Plus 7, 13 (Type 3 only)</td>
</tr>
<tr>
<td>Access Mode for Message 21</td>
<td>FATDMA</td>
<td></td>
<td></td>
<td>FATDMA and RATDMA (Type 3 only)</td>
</tr>
<tr>
<td>Access Mode for Messages other than 21</td>
<td></td>
<td></td>
<td></td>
<td>FATDMA (Type 1 and 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>One or more of FATDMA, RATDMA or CSTDMA (Type 3)</td>
</tr>
<tr>
<td>Configuration / Communication method</td>
<td>Defined by manufacturer</td>
<td></td>
<td>Defined by manufacturer</td>
<td>with Standard Sentences (Type 1, 2 and 3)</td>
</tr>
<tr>
<td>Physical Communication Interface</td>
<td>None</td>
<td></td>
<td></td>
<td>The electrical and physical characteristics shall be defined by</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>manufacturer. (Type 1, 2 and 3)</td>
</tr>
<tr>
<td>Transmit Power</td>
<td>12.5 W</td>
<td></td>
<td></td>
<td>As defined by manufacturer (Type 1, 2 and 3)</td>
</tr>
<tr>
<td>Transmitter capability</td>
<td>Dual channel</td>
<td></td>
<td>Single channel (Type 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 and 3)</td>
<td></td>
</tr>
<tr>
<td>Synthetic and Virtual AtoN</td>
<td>No</td>
<td></td>
<td>Yes (Type 1, 2 and 3)</td>
<td></td>
</tr>
<tr>
<td>Positioning Device</td>
<td>EPFS and Surveyed Position</td>
<td></td>
<td>Surveyed Position Only (no EPFS) (Type 1, 2 and 3)</td>
<td></td>
</tr>
<tr>
<td>UTC synchronisation</td>
<td>Direct Only</td>
<td></td>
<td>Direct, Indirect or semaphore (Types 3)</td>
<td></td>
</tr>
<tr>
<td>Assignment</td>
<td>Shall not respond to assignment Messages 16 and 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interrogation</td>
<td>Shall not respond to interrogation Message 15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEX C SUMMARY OF CURRENT MESSAGE TYPES

Reference ITU-R M.1371

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Position report</td>
<td>Scheduled position report; (Class A shipborne mobile equipment)</td>
</tr>
<tr>
<td>2</td>
<td>Position report</td>
<td>Assigned scheduled position report; (Class A shipborne mobile equipment)</td>
</tr>
<tr>
<td>3</td>
<td>Position report</td>
<td>Special position report, response to interrogation; (Class A shipborne mobile equipment)</td>
</tr>
<tr>
<td>4</td>
<td>Base station report</td>
<td>Position, UTC, date and current slot number of Base station</td>
</tr>
<tr>
<td>5</td>
<td>Static and voyage related data</td>
<td>Scheduled static and voyage related vessel data report; (Class A shipborne mobile equipment)</td>
</tr>
<tr>
<td>6</td>
<td>Binary addressed message</td>
<td>Binary data for addressed communication</td>
</tr>
<tr>
<td>7</td>
<td>Binary acknowledgement</td>
<td>Acknowledgement of received addressed binary data</td>
</tr>
<tr>
<td>8</td>
<td>Binary broadcast message</td>
<td>Binary data for broadcast communication</td>
</tr>
<tr>
<td>9</td>
<td>Standard SAR aircraft position report</td>
<td>Position report for airborne stations involved in SAR operations, only</td>
</tr>
<tr>
<td>10</td>
<td>UTC/date inquiry</td>
<td>Request UTC and date</td>
</tr>
<tr>
<td>11</td>
<td>UTC/date response</td>
<td>Current UTC and date if available</td>
</tr>
<tr>
<td>12</td>
<td>Addressed safety related message</td>
<td>Safety related data for addressed communication</td>
</tr>
<tr>
<td>13</td>
<td>Safety related acknowledgement</td>
<td>Acknowledgement of received addressed safety related message</td>
</tr>
<tr>
<td>14</td>
<td>Safety related broadcast message</td>
<td>Safety related data for broadcast communication</td>
</tr>
<tr>
<td>15</td>
<td>Interrogation</td>
<td>Request for a specific message type (can result in multiple responses from one or several stations)</td>
</tr>
<tr>
<td>16</td>
<td>Assignment mode command</td>
<td>Assignment of a specific report behaviour by competent authority using a Base station</td>
</tr>
<tr>
<td>17</td>
<td>DGNSS broadcast binary message</td>
<td>DGNSS corrections provided by a Base station</td>
</tr>
<tr>
<td>18</td>
<td>Standard Class B equipment position report</td>
<td>Standard position report for Class B shipborne mobile equipment to be used instead of Messages 1, 2, 3</td>
</tr>
<tr>
<td>19</td>
<td>Extended Class B equipment position report</td>
<td>Extended position report for class B shipborne mobile equipment; contains additional static information</td>
</tr>
<tr>
<td>20</td>
<td>Data link management message</td>
<td>Reserve slots for Base station(s)</td>
</tr>
<tr>
<td>21</td>
<td>Aids-to-navigation report</td>
<td>Position and status report for aids-to-navigation</td>
</tr>
<tr>
<td>22</td>
<td>Channel management</td>
<td>Management of channels and transceiver modes by a Base station</td>
</tr>
<tr>
<td>23</td>
<td>Group assignment command</td>
<td>Assignment of a specific report behaviour by competent authority using a specific group of mobiles</td>
</tr>
<tr>
<td>24</td>
<td>Static data report</td>
<td>Additional data assigned to an MMSI</td>
</tr>
<tr>
<td>25</td>
<td>Single slot binary message</td>
<td>Short unscheduled binary data transmission (Broadcast or addressed)</td>
</tr>
<tr>
<td>26</td>
<td>Multiple slot binary message with Communications State</td>
<td>Scheduled binary data transmission (Broadcast or addressed)</td>
</tr>
</tbody>
</table>