REPORT

IALA Workshop

Employing the e-Navigation
Common Shore-Based System Architecture (CSSA)

26 – 29 August 2014
Executive Summary

A workshop on the subject of employing the e-Navigation Common Shore-Based System Architecture (CSSA) was hosted by the German Federal Waterways and Shipping Administration in Hamburg, Germany between 26 and 29 August 2014.

The workshop was attended by 47 delegates, representing 16 countries (see ANNEX D).

A series of 11 presentations were given under three broad headings:

1. The CSSA in its context;
2. The generic CSSA service model;
3. The CSSA service model in action: the German example (including lessons learned).

The workshop then broke into two Working Groups to discuss and produce a draft Recommendation on Generic Service Engineering Model for submission to the ENAV Committee at its 15th Session.

The social programme consisted of a Welcome Reception, and a Workshop Dinner and a Technical Tour comprised of a tour to Kiel Canal Brunsbüttel site, to provide insights into a practical working application of the CSSA.

The workshop produced:

- a number of important conclusions for IALA to consider as part of implementing the IALA CSSA which included:
 - The holistic overarching architecture of e-Navigation was reaffirmed in concepts such as “the three sides of the coin” and the “Seven Pillars model”.
 - It was recognised that the Common Shore-based System Architecture (CSSA) is an instrument contributing to the e-Navigation pillar No. 6, “shore-based infrastructure (‘fit for e-Navigation’)”.
 - It was recognised that mutual benefits could be gained for IALA membership if commonalities of technical systems and features are identified and described in generic approved IALA documents and those under development. For example the draft CSSA System layout, CSSA service model as reflected in input document CSSA1-3.3 / e-Nav14-17.2.5.1.
 - The service-oriented CSSA under development by IALA is considered to be flexible and open enough to support all areas of application within IALA’s remit.
 - The technical services defined in the CSSA System Layout contribute to a definition of the scope of technical services to be eventually included in the development of the Maritime Service Portfolios (MSPs).
 - There is a need to employ a life cycle management and system engineering model for developing, implementing and maintaining a common shore based system but it was recognized that different parts of the system engineering model will be executed by different
stakeholders in the development process, i.e. by IALA, IALA national members, other
competent authorities, and manufacturers.

- The need was recognised for a suite of documents bundled together in one draft new IALA
 Recommendation on the generic CSSA service model as main body and several appendices
to cover all relevant topics of the generic service model.

- The further development of IALA Rec V128 could be assisted by employing the CSSA
 System Layout and the approved / draft CSSA service descriptions for the specific
 technologies under consideration in V128, for example Radar Service, radio communication
 services, Direction Finding Service, etc.

- The CSSA under development by IALA has the potential to organise the provision of radio
 communication services for rescue, VTS communication, public correspondence, etc.

- There is a need to include the definition of approved CSSA terms and acronyms in the IALA
dictionary.

- An additional workshop may be required to further develop CSSA and its documentation.
Table of Contents

1. Introduction .. 6
2. Overall Programme .. 6
3. Conclusions ... 7

Annexes to the Report .. 8

ANNEX A
Opening of the workshop and technical sessions .. 8

4. Session 1 - Opening .. 8
 4.1 Address by Gary Prosser, Secretary General of IALA ... 8
 4.2 Administrative and safety information .. 8
 4.3 Workshop’s aim & objectives ... 8
 4.4 Introduction to IMO e-Navigation and modernisation of GMDSS 8
 4.5 Introduction to input documents (pre-reading) and present status of CSSA 10

5. Session 2 – The CSSA in its context ... 10
 5.1 Presentation: Harmonization of shore-based User Requirements 10
 5.2 Presentation: Shore-based (Unified) Operational Presentation Surface 11
 5.3 Presentation: Relationship of CSSA with other “e-Navigation pillars” (MSPs, CMDs,
 PNT, Communications etc) and S-100 based “products". ... 11
 5.4 Presentation: The CSSA System Layout – Introduction to the IALA Recommendation 11
 5.5 Discussion ... 12

6. Session 3 – The generic CSSA Service Model .. 12
 6.1 Presentation: Introduction to the generic CSSA Service Model with special reference to
 IALA AIS Service (A-124) ... 12
 6.2 Presentation: From model to procurement: necessary steps and relevant precautions 13
 6.3 Presentation: Implementation Options: What UPnP (Universal Plug and Play) can
 contribute .. 13

7. Session 4 – CSSA Service Model in Action; the German example (including lessons
 learned) ... 14
 7.1 Presentation: Deploying a coastal-wide, multi-node, multi-service CSSA. 14
 7.2 Presentation: Organisational and Cost Implications of CSSA for the German
 Administration ... 14
 7.3 Presentation: Roles and functions of Technical Development and Technical Operations
 Personnel ... 15

8. Sessions 5 to 9 – Working Groups ... 15
9. Session 10 – Reports of Working Groups .. 15
 9.1 Report of Working Group 1 - The generic service model .. 15
 9.2 Report of Working Group 2 - The service operation and service life-cycle management 16
 9.3 Plenary discussion ... 16
9.4 Workshop report

10. Closing of the workshop

ANNEX B Technical Study Tour

ANNEX C Social events

10.1 Welcome reception

10.2 Workshop dinner

ANNEX D List of Delegates

ANNEX E Working Group Participants

ANNEX F Workshop Programme

ANNEX H Workshop input Papers

ANNEX I Workshop Output documents

ANNEX J Actions arising from the workshop
IALA WORKSHOP ON EMPLOYING THE E-NAVIGATION COMMON SHORE-BASED SYSTEM ARCHITECTURE (CSSA)

1. Introduction

A workshop on the subject of employing the e-Navigation Common Shore-Based System Architecture (CSSA), hosted by the German Federal Waterways and Shipping Agency was held at BSH Hamburg Headquarters, “Landungsbrücken”, Bernhard-Nocht-Straße 78, 20359 Hamburg, Germany between 26 and 29 August 2014. The workshop was attended by 47 delegates, representing 16 countries.

A list of participants is at ANNEX D.

2. Overall Programme

The overall programme is shown in the following table.

| IALA Workshop on employing the e-Navigation Common Shore-Based System Architecture Overall Programme |
|---|---|---|---|
| **Tuesday 26th August** | **Wednesday 27th August** | **Thursday 28th August** | **Friday 29th August** |
| Registration | Technical session 4 The CSSA service model in action: the German example (including lessons learned) | Break | Technical session 9 Working Groups |
| | Break | Technical session 5 Working Groups | Technical Study Tour to Kiel Canal Brunsbüttel | Break |
| Session 1 Opening of the Workshop | Technical Session 2 The CSSA in its context | Technical session 6 Working Groups | Session 10 Conclusions & Closing of Workshop |
| Technical Session 3 The generic CSSA service model | | Technical session 7 Working Groups | |
| Welcome reception | Workshop dinner | Free |
3. Conclusions

Following a discussion of the conclusions, the workshop agreed to the following fifteen conclusions:

1. The holistic overarching architecture of e-Navigation was reaffirmed in concepts such as “the three sides of the coin” and the “Seven Pillars model”.

2. It was recognised that the Common Shore-based System Architecture (CSSA) is an instrument contributing to the e-Navigation pillar No. 6, “shore-based infrastructure (‘fit for e-Navigation’)”.

3. It was recognized that mutual benefits could be gained for IALA membership if commonalities of technical systems and features are identified and described in generic approved IALA documents and those under development. For example the draft CSSA System layout, CSSA service model as reflected in input document CSSA1-3.3 / e-Nav14-17.2.5.1.

4. The service-oriented CSSA under development by IALA is considered to be flexible and open enough to support all areas of application within IALA’s remit.

5. The technical services defined in the CSSA System Layout contribute to a definition of the scope of technical services to be eventually included in the development of the Maritime Service Portfolios (MSPs).

6. There is a need to employ a life cycle management and system engineering model for developing, implementing and maintaining a common shore based system but it was recognized that different parts of the system engineering model will be executed by different stakeholders in the development process, i.e. by IALA, IALA national members, other competent authorities, and manufacturers.

7. The need was recognised for a suite of documents bundled together in one draft new IALA Recommendation on the generic CSSA service model as main body and several appendices to cover all relevant topics of the generic service model.

8. The further development of IALA Rec V128 could be assisted by employing the CSSA System Layout and the approved / draft CSSA service descriptions for the specific technologies under consideration in V128, for example Radar Service, radio communication services, Direction Finding Service, etc.

9. The CSSA under development by IALA has the potential to organise the provision of radio communication services for rescue, VTS communication, public correspondence, etc.

10. The importance of boundaries for the different entities of the CSSA was recognised, for example system boundary, service boundary, functional layer boundary, and component boundary.

11. Each CSSA technical service has its own Service Management which is related to the Service Level Agreement for that technical service.

12. From a CSSA technical management point of view, the required connectivity between the individual technical services is expected to be implemented at Set Up and Run Time Configuration.

13. There is a need to adopt and/or develop and harmonize interfacing protocols and standards throughout the CSSA. This should be aligned with international developments in the field of harmonized open protocols.

14. There is a need to include the definition of approved CSSA terms and acronyms in the IALA dictionary.

15. An additional workshop may be required to further develop CSSA and its documentation.
Annexes to the Report

ANNEX A OPENING OF THE WORKSHOP AND TECHNICAL SESSIONS

4. Session 1 - Opening

Chaired by Jan-Hendrik Oltmann, Federal Waterways and Shipping Agency, Germany and Chairman of WG5 of the IALA ENAV Committee.

All presentations form part of the output of the workshop.

4.1 Address by Gary Prosser, Secretary General of IALA

In his opening remarks, Gary Prosser welcomed all the delegates, observing that the venue of the ship mega-centre of Hamburg was particularly appropriate for this workshop. He noted that the workshop was oversubscribed, indicating the importance of the subject and the timeliness of the workshop. He thanked the WSV for generously hosting the workshop and thanked the steering group for their fantastic work and attention to detail. He noted the excellent line-up of speakers and participants. Observing that this is the first IALA major event since the General Assembly approved the IALA strategy and vision for the next work term in May 2014, he acknowledged the relevance of the important topic of this workshop. The work is very much in line with the discussion at IMO NCSR1 in June 2013 and is an enabler to the development of e-Navigation which is a game changer in marine navigation. Thanking all in advance for the work of the week, he noted that IALA is all the participants in the work as well as the secretariat.

4.2 Administrative and safety information

Administrative and safety information was provided by Jan-Hendrik Oltmann, German Federal Waterways Administration, by means of a presentation.

4.3 Workshop’s aim & objectives

A presentation was made by Jan-Hendrik Oltmann of the IALA ENAV Committee. The objectives of the workshop were outlined as follows:

1. Provide an opportunity for knowledge sharing on shore-based e-Navigation architecture,
2. Provide an opportunity for participants to understand the generic service-oriented concept of the CSSA,
3. Enable participants to apply the CSSA to their application fields (such as VTS, GMDSS, AtoN, terrestrial components of the WWRNS),
4. Draft an IALA Recommendation on the IALA CSSA Generic Service Model,
5. Facilitate cooperation between stakeholders involved in the provision of VTS/AtoN services in the context of e-Navigation.

4.4 Introduction to IMO e-Navigation and modernisation of GMDSS

This topic was presented by Jean-Charles Cornillou, Cerema / DtecEMF / DT, France.

Presentation abstract

Since 2006, IMO has developed a strategic implementation plan (SIP) for e-Navigation. It started with an input from Brian Wadsworth of the UK Department of Transport on 21st February 2005. The major argument was the historic opportunity for technology to meet the safety of navigation requirements of IMO for the maritime navigation. Gap analysis, global and basic objectives and
advantages have been discussed and drafted. In 2011, the general e-Navigation architecture was adopted. In 2013, a formal safety assessment focused on five e-Navigation solutions as a first step. In July 2014, the IMO NCSR 1 approved the SIP for submission to the MSC. The next MSC meeting will be in November 2014.

In parallel, IMO decided in 2009 to start the review and modernization of GMDSS.

There are many organizations dealing with e-Navigation: IALA, IHO, ITU…while the coordination is under IMO. Nevertheless, it should be kept in mind that e-Navigation and GMDSS need radio communications (whether terrestrial or satellite) and IMO has to clarify its agenda to the ITU World Radio Conference in due time, for ITU governs the regulation of radio frequencies for all kinds of activities. If there is no requirement from IMO, there will be no provision for IMO requirements at ITU. In that respect the task of the IMO/ITU experts group is primary for both e-Navigation and GMDSS.

If e-Navigation is based on human centre designed, e-Navigation is nothing without radio communications. Basic fundamentals should be recalled: GMDSS is described in the Radio Regulations (RR) has the maritime radio communication system not only for distress, but for urgency, safety and routine messages as well and its functionalities are detailed in IMO SOLAS chapter IV, the chapter dealing with radio communication.

The high level review of GMDSS spent a lot of time trying to change the present functional requirements. It was concluded that the functional requirements may need to be clarified, but are still globally relevant. Some systems have already been excluded from a global maritime system, such as internet mobile service, mobile telephone service or BWA, for different technical reasons, mainly lack of robustness and frequencies used are outside the maritime spectrum as defined internationally at ITU. There is no agenda point from IMO relating to an extension of frequencies in maritime activities for the next WRC. On the other hand there are new systems within the maritime frequency spectrum that need to be considered. NAVDAT, a MF broadcasting system for digital maritime security or safety information has been already adopted at ITU. There are others systems under consideration such as VDES, Digital HF.

In the detailed review of GMDSS, there should be a focus on provision of radio communication services (SOLAS IV R5). This side of GMDSS needs to be secured, not only for securing a distress call, but also as it represents the basis of a common shore based system implementation for radio communications of any kind (distress, urgency, safety & routine). Ultimately, consideration should not be about e-Navigation or GMDSS, but simply about radio communications, seeking a way to secure them for the sake of e-Navigation and GMDSS.

The key points of the presentation were:

1 Summary of e-Navigation development at IMO.
2 Proposition of clarification of present GMDSS functional requirements.
3 High level review of GMDSS.
4 Detailed review of GMDSS.
5 Common points between e-Navigation and modernization of GMDSS.

Discussion

It was noted that the author had placed GMDSS in pillar 4 of the IMO Strategic Implementation Plan (SIP) 7 pillars rather than in pillar 6. The author responded that 9 functions have been identified for the ship side while few functions have emerged for the shore side. The IMO SAR Joint Working Group at NCSR1 tried to audit the IMO scope of this. Operations are now looking at the shore side. There is a need to secure ship to shore communications for shipping. Pillar 6 (CSSA) is not relevant without pillar 4 (Communications).

Responding to concerns that the AtoN communications system should not be overloaded by other services, the author stated that GMDSS is not solely for search and rescue (SAR) but also includes urgency communications. GMDSS is a component of CSSA and is being modernised.
Responding to a statement that IMO NCSR1 had decided the GMDSS modernisation should be treated as a separate project, while there is a need for coordination of e-Navigation and GMDSS development, it was noted that the CSSA should state user requirements and GMDSS is just another customer in CSSA.

4.5 Introduction to input documents (pre-reading) and present status of CSSA

This topic was presented by Jan-Hendrik Oltmann, Federal Waterways and Shipping Agency, Germany.

The Workshop input documents ANNEX H were described. The presenter encourage participants to take account of the supplementary documents when reviewing the main input documents.

5. Session 2 – The CSSA in its context

Chaired by Jean-Charles Cornillou, Cerema / DtecEMF / DT.

5.1 Presentation: Harmonization of shore-based User Requirements

The presentation was made by Michele Fiorini, Selex ES, Italy.

Presentation abstract

The International Maritime Organisation (IMO) required a user-needs driven design for the e-Navigation architecture. As a result, a transition process from user needs to structured and traceable system requirements is needed and could be realised by means of systems engineering principles.

Both the shore-based systems harmonised for e-Navigation and the ship technology environment harmonised for e-Navigation need to be capable of processing and using the Common Maritime Data Structure (CMDS) governed by IMO. CMDS represents the entities and relationships among the entities that exist in their domains. Also the links between ship and shore need to be encoding compliant with the CMDS. These relationships can also be represented in terms of services and this is where the IMO introduced the concept of Maritime Service Portfolio(s).

The presentation illustrated certain elements of e-Navigation and how they relate, using systems engineering methodology in order to harmonised user requirements from more precise analysis of the e-Navigation architecture. This can be achieved by means of the IALA e-Navigation Stack that consists of well defined layers arranged in hierarchically top-down fashion starting from the user requirements down to the shore-based system architecture and specific technical e-Navigation services.

The key points of the presentation were:

1. The use of systems engineering process to derive harmonised user requirements.
3. The relationship of the IALA e-Navigation Stack with the IHO Registry.
5.2 Presentation: Shore-based (Unified) Operational Presentation Surface

The presentation was made by Tom Dehmel, University of Wismar, Dept. of Maritime Studies Warnemünde, Germany.

Presentation abstract

The presentation dealt with the development of a coastal-wide, multi-node, multi-service CSSA for the German Waterways and Shipping Administration. A part of this system is a unified human-machine interface (HMI) for VTS operators. The main focus was on the process of the definition of nautical user requirements for this HMI, and how these requirements have been brought to life (i.e. into operation). The presentation allowed a short glance at the result (i.e. the new HMI) and subsumes the “lessons learned” during the whole process. It was noted that one of the main issues arising was system stability.

The key points of the presentation were:
1. VTS human-machine interface.
2. Definition of user requirements.
3. Acceptance tests.

5.3 Presentation: Relationship of CSSA with other “e-Navigation pillars” (MSPs, CMDS, PNT, Communications etc) and S-100 based “products”.

The presentation was made by Yung-Ho Yu, Korea Maritime and Ocean University, Korea.

Presentation abstract

The e-Navigation Strategy Implementation Plan (SIP) is being developed from the analysis of user requirements. IMO has derived 16 Maritime Service Portfolios (MSPs) through prioritization and Formal Safety Assessment. The method of how to evaluate, manage, implement, provide and display the MSPs is considered. Because MSPs are also a kind of IT service, how to improve the service quality is surveyed. To implement e-Navigation efficiently, roles of the CSSA are emphasized. To harmonize with the S-100 concept, where overarching S-100 based products can be provided, e-navigation is considered. To help understanding of the relationship between the CSSA and S-100 based products, MSP number 8 Vessel shore reporting of IMO is implemented with the S-100 concept.

The key points of the presentation were:
1. Evaluation model of MSP.
2. Relationship of CSSA and S-100 based Products.
3. ITIL V3 for IT service improvement.
4. HCD design and U-TEA (Usability Test, evaluation and assessment).

5.4 Presentation: The CSSA System Layout – Introduction to the IALA Recommendation

The topic was presented by Jan-Hendrik Oltmann, Federal Waterways and Shipping Administration, Germany.

Presentation abstract

The IALA e-NAV Committee, during its 14th session, September 2013, finalised a draft new IALA Recommendation on the Common Shore Based System Architecture (CSSA) System Layout. The intention of this recommendation is, amongst others, to provide a common generic reference framework to, in particular, national IALA members when they set up appropriate shore infrastructure for Aids-to-Navigation, VTS and other services offered. Also, it was the intention to develop this common
generic reference framework in the spirit of the IMO-developed e-navigation strategy. The main
generic building block of the CSSA is an entity which is called “technical service”, and the CSSA
essentially is a service-oriented architecture. Thus, the draft new IALA Recommendation also
provides the framework for the generic service model for which the development of a generic
service model has started some time ago in the IALA e-NAV Committee. This is the focus of the
present Workshop. The presentation introduced the draft new IALA Recommendation on the CSSA
System Layout in general and raised specific points of interest for the Workshop, such as the
relationship to the emerging concept of the Maritime Service Portfolios (MSPs).

5.5 Discussion
Responding to concerns that the input documents contain definitions that may not be recognised
by the international community and the suggestion that IALA should address this issue, the author
noted that there are 87 IALA national members while there are 176 IMO states and consequently
there is a danger that IALA definitions will not be sufficiently global for a global e-Navigation
service and that IMO and IALA definitions must not be separate.

Responding to a question about the relationship between the e-Navigation Stack and Product
Specifications, it was stated that Product Specifications is the package meeting needs of portrayal,
data modelling, and architecture elements of the stack while the stack provides the building blocks.

Responding to statements that people generally do not like to change, it was noted that reluctance
to change can provide a first filter to remove existing bad practices and discussion is the key to
encouraging participation. Some practices which are acceptable in legacy systems may not be
acceptable in new systems because of the increased scope and integration of new systems.

6. Session 3 – The generic CSSA Service Model

Chaired by Michele Fiorini, Selex ES, Italy.

6.1 Presentation: Introduction to the generic CSSA Service Model with special
reference to IALA AIS Service (A-124)

The topic was presented by Jan-Hendrik Oltmann, Federal Waterways and
Shipping Administration, Germany.

Presentation abstract
The IALA e-NAV Committee, during its previous sessions, has developed both a
structure as well as substantial materials for a draft new IALA recommendation on
the generic CSSA Service Model. This work was carried out in close collaboration
with the development of the IALA Recommendation on the shore-based AIS
Service (A-124), which serves as a technology-specific example. Due to the complexity of a shore-
based service, when considering not only structural but also life cycle management and
configuration issues, the materials relevant to describe a shore-based service were distributed over
a standardised set of appendices. Each appendix addresses specifically one or a number of
related topics. The presentation introduced the work of the e-NAV Navigation Committee of the
past years in this regards, in particular the “suite” of appendices. Reference is made to the IALA
Recommendation A-124, where appropriate. The presentation also introduces the different
degrees of maturity of the materials developed by the IALA e-Navigation Committee over the years
and thus sets the scene for the working groups in this regards.

The key points of the presentation were:
1. IALA e-Navigation Stack.
4. Generic technical service model.
5. Maritime Service Portfolios (MSPs).
6.2 Presentation: From model to procurement: necessary steps and relevant precautions

The topic was authored by Yves Desnoes, Institut Français de Navigation (IFN), France and presented by Jean-Charles Cornillou, CEREMA, France.

Presentation abstract

e-Navigation is mainly about integration and interoperability, which increases system complexity. e-Navigation will be markedly more complex than ECDIS. A necessary leap forward in quality assurance (implying human centred design) is necessary to mitigate complexity. As there is no easily applicable method to deal with interoperability, we have to innovate in this complex area, so that we should start with concepts and designs as simple as possible. For the sake of simplicity and of state-of-the-art configuration management, precise targets for successive phases of e-Navigation are needed, as well as proven methods for individual projects. A first target could be what can be achieved with the GMDSS (hopefully modernized) as well as the AIS and the VDES in their currently defined states, with simple improvements for which solutions are available, like NAVDAT and also some reporting from ship to shore. Among the key success factors will be the building of multidisciplinary teams, including seafarers, as well as cooperation with ship-side projects and with other shore systems. Innovation cannot be fully and precisely defined from the beginning, so that flexibility in contracts and budgets will be needed.

The key points of the presentation were:

6. e-Navigation systems will be more complex than current systems.
7. A leap forward in quality assurance is necessary to mitigate this increase in complexity.
8. We have to define a precise target for the first phase of e-Navigation.
9. This target should be made up of individually simple improvements and add-ons.
10. Team building and cooperation will be key factors for success.

6.3 Presentation: Implementation Options: What UPnP (Universal Plug and Play) can contribute

The topic was presented by Fred Pot, Marine Management Consulting, USA.

Presentation abstract

Inter-vendor operability is a requirement in the proposed CSSA. A standard for seamless, secure, robust Machine-to-Machine (M2M) communications is required to allow tight integration of devices, systems and services from a variety of vendors. Such a standard will ensure modularity and flexibility, avoid vendor lock-in, allow mixing and matching of best-in-class solutions and make CSSA future proof.

The Universal Plug-n-Play (UPnP) Forum offers a set of widely adopted, publicly available protocols that provide practical, zero configuration implementations for inter-vendor operability, security, flow control, remote maintenance and a number of other features. UPnP protocols are based on internet technology and are independent of the operating system and the programming language. UPnP protocols can be deployed on a Local Area Network (LAN) and on the world-wide web.

The presentation detailed how UPnP works, what enhancements vendors would need to make to products to make them UPnP compatible and what is involved in obtaining UPnP certification for products.
The key points of the presentation were:

2. Universal Plug-n-Play (UPnP) protocols are readily available standard implementations for seamless, zero configuration M2M communications that fulfil requirements for security, scalability, modularity, flexibility, integrity and maintainability.
3. Adapting devices, systems and services to be able to use standard UPnP protocols is relatively simple because they are based on internet technology and are independent of the operating system and the programming language.
4. Self-certification of devices, systems and services to comply with UPnP standards is inexpensive and doesn’t involve a long process.

7. Session 4 – CSSA Service Model in Action; the German example (including lessons learned)

This session was chaired by Jan-Hendrik Oltmann, Federal Waterways and Shipping Administration, Germany.

7.1 Presentation: Deploying a coastal-wide, multi-node, multi-service CSSA.

The topic was presented by Christian Herrlich, Federal Waterways and Shipping Administration, Germany.

Presentation abstract

The Presentation showed the German example of how to create a maritime traffic technology system. Both targets and state of implementation were shown. The lessons learned considered technical and organisational aspects to deliver German experiences for benefits and challenges en-route to implementation.

The key points of the presentation were:

1. The German example of how to create a maritime traffic technology system.
2. State of project implementation.
3. Interaction during implementation process.
4. Lessons learned.
5. Summary and Forecast.

Discussion

The author confirmed that the system described was implemented on rivers.

Responding to a question re how the interface radar specifications were developed, the author stated that international standards are best and were used where available. In the absence of international standards where in-house specifications were used, care should be taken to regulate intellectual property rights.

7.2 Presentation: Organisational and Cost Implications of CSSA for the German Administration

The topic was presented by Dirk Eckhoff, Federal Waterways and Shipping Administration, Germany.

Presentation abstract

In year 2000 the German Waterways and Shipping Administration started to restructure their AtoN and VTS-systems along the German coast. The CSSA-like Maritime Traffic Technology System (MTTS) was developed. Since a holistic approach was also taken the organisational structure for technical development
and maintenance was changed in accordance with the new system architecture.

The presentation highlighted the organisational and cost implication for the German example during a decade of development and realisation.

The key points of the presentation were:

6. Previous organisational structure (local, heterogeneous).
7. New organisational structure (coastal-wide, homogeneous).
8. Measures to restructure at management and maintenance level.
9. Implication for the personnel.
10. Cost for the technical system.

Discussion

Addressing a query regarding whether functional or technical specifications were used in procurement, the author responded that functional specifications were generally used, except where there was certainty of requirements or special features.

7.3 Presentation: Roles and functions of Technical Development and Technical Operations Personnel

The presentation was made by Sascha Heesch, Central Engineering and Maintenance Office for Maritime Traffic Technology, Germany.

Presentation abstract

The implementation of a new system takes a large number of personnel in the Technical Development department. During evolution of the system there is a need to increase the number of Technical Operations Personnel. The presentation outlined which roles and functions are needed for Development and Operations.

The key points of the presentation were:

1. There is a need for a review of organisational structure when changing technical structures in an organisation.
2. There is a need for technical development and technical operations departments to collaborate closely in technical infrastructure projects.

8. Sessions 5 to 9 – Working Groups

The Working Groups sessions were introduced by Jan-Hendrik Oltmann and co-ordinated by Jean-Charles Cornillou.

The workshop broke into two Working Groups, to progress the draft Recommendation:

- **WG1** The generic service model
 Leader: Jan-Hendrik Oltmann

- **WG2** The service operation and service life-cycle management
 Leader: Michele Fiorini

9. Session 10 – Reports of Working Groups

Chaired by Jan-Hendrik Oltmann and Michele Fiorini.

9.1 Report of Working Group 1 - The generic service model

The WG chair (Jan-Hendrik Oltmann) reported on progress by WG1 on sections of the draft Recommendation on CSSA generic service model.
1. A full review of the Main Body of the Recommendation was carried out, providing a general understanding of underlying Service Oriented Architecture. Editorial amendments to improve readability and to update content were agreed which will be implemented by Jan-Hendrik Oltmann and submitted to ENAV15.

Action item

Jan-Hendrik Oltmann is requested to editorially revise the Main Body of the draft Recommendation on CSSA generic service model as agreed and submit the revised draft Recommendation to ENAV15.

2. Appendix 5 “Interfacing Model” was revised with the introduction of UPnP aspects.

3. Appendix 7 “Reliability Model” was updated in terms of structure and content specification.

9.2 Report of Working Group 2 - The service operation and service life-cycle management

The WG chair (Michele Fiorini) described the work which had been carried out by Working Group 2. The WG carried out brainstorming exercises on four input documents.

1. Text was drafted for Appendix 8, Test Model.

2. Appendix 11, Generic Functional Description of the Service Management, was amended.

3. Text was drafted for Appendix 13, Efficient Operation and Maintenance of a service.

4. Appendix 14, Runtime Configuration Management of a service, was amended

9.3 Plenary discussion

In discussion, it was observed that a lot of work had been carried out in the preparation of a CSSA model. However many questions and needs for clarification still remain.

The CSSA model may help national, regional and local competent authorities to implement harmonised shore based e-Navigation architecture, although the circumstances in different countries or regions may vary responsibility/authority for provision of services, possibly limiting the full adoption of the model.

Finalisation of the CSSA Recommendation should be done in such a way that the ENAV Committee can deal with the whole CSSA methodology.

The machine – machine software interface is included in the model but was not discussed during the workshop.

Following expression of concern that some references quoted in the draft Recommendation are not approved documents, it was agreed that the whole Recommendation will be accepted by the ENAV Committee and approved by the IALA Council, thereby ensuring that the entire content is approved irrespective of its original source.

9.4 Workshop report

Seamus Doyle noted that the workshop documents and photographs would be available on the workshop Dropbox for one month. The workshop report will be posted on the workshop Dropbox within one week and will be available long term on the IALA website.

Action Item

The IALA Secretariat is requested to forward the output documents to the 15thSession of the IALA ENAV Committee.
10. Closing of the workshop

Seamus Doyle, IALA, thanked everyone for attending and working so hard. He said that the workshop was of great value to the IALA ENAV Committee and that he hoped that it had been professionally beneficial to all the delegates. He felt that significant progress had been made and the draft IALA Recommendation would be progressed at ENAV15. He thanked the members of the Federal Waterways and Shipping Administration for their excellent hosting of the event, the steering group and session chairs, IALA Secretariat and the delegates for making the workshop such a success.

He wished everyone a safe journey home and declared the workshop closed.
ANNEX B TECHNICAL STUDY TOUR

On Thursday, a bus tour was made to the Kiel Canal Brunsbüttel site, including a visit to the locks assembly, to see a CSSA first hand and to provide insights into a practical working application of the CSSA. The Kiel Canal is an European motorway of the sea and was an excellent venue for witnessing a CSSA in action. The group visited the Central Control Centre for the German coastal-wide CSSA implementation, the associated Brunsbüttel server/communications node of the German CSSA implementation which is one of three such nodes in Germany providing double redundancy of all VTS and AtoN data and control, the VTS centre for the Kiel Canal, and the VTS centre for the Elbe river Hamburg approach. The visit was very informative and much appreciated by participants.
ANNEX C SOCIAL EVENTS

10.1 Welcome reception
On Tuesday 26 August, delegates were welcomed at a reception at the Hotel Hafan Hamburg.

10.2 Workshop dinner
A workshop dinner was held at the Blockbraeu, on Wednesday 27 August. The master of the local
brewery at the Blockbraeu explained the brewing process and introduced participants to samples
of the ingredients used in brewing. This was followed by an excellent dinner with a variety of typical
German food. The event was a huge success.
ANNEX D LIST OF DELEGATES

<table>
<thead>
<tr>
<th>Country</th>
<th>Organization</th>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>Province</th>
<th>Country</th>
<th>Phone</th>
<th>Fax</th>
<th>Mobile Phone</th>
<th>E-mail (Main)</th>
<th>E-mail (Alternative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Australian Maritime Systems</td>
<td>Mr. Brian JOHNSON</td>
<td>655 MacArthur Avenue</td>
<td>Pinkenba</td>
<td>Brisbane, Queensland</td>
<td>Australia</td>
<td>+61 7 363 34100</td>
<td>+61 7 363 34198</td>
<td>+61 417 988 820</td>
<td>btj@marsys.com.au</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>OMC International</td>
<td>Captain Jonathon PEARCE</td>
<td>RH 7 Dorset House, 5 Church Street</td>
<td>Wimborne</td>
<td>Dorset, BH21 1JH</td>
<td>UK</td>
<td>+44 7833 517 006</td>
<td></td>
<td>+44 7833 517 006</td>
<td>jonp@omc-international.com</td>
<td>jpearce@aleau.com</td>
</tr>
<tr>
<td>China (People's Republic of)</td>
<td>China Maritime Safety Adminstration</td>
<td>Mr. Liang ZHANG</td>
<td>Jianguomennei Ave. 11</td>
<td>Beijing</td>
<td>100736</td>
<td>People's Republic of China</td>
<td>+86 10 6529 9557</td>
<td>+86 10 6529 9561</td>
<td></td>
<td>ialachina@msa.gov.cn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maritime Safety Administration of the P.R. of China</td>
<td>Mr. Anjian HOU</td>
<td>Jianguomennei Ave. 11</td>
<td>Beijing</td>
<td>100736</td>
<td>People's Republic of China</td>
<td>+86 10 6529 9557</td>
<td>+86 10 6529 9561</td>
<td>+86 1860 261 6907</td>
<td>haj07890051@sina.com</td>
<td>ialachina@msa.gov.cn</td>
</tr>
</tbody>
</table>

Page 20 of 41
<table>
<thead>
<tr>
<th>Country</th>
<th>Organization</th>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Mobile Phone</th>
<th>Main Email</th>
<th>Alternative Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>Finnish Transport Agency</td>
<td>Ms. Kaisu HEIKONEN</td>
<td>P. O. Box 33, FIN-00521 Helsinki Finland</td>
<td>+358 29 534 3302</td>
<td></td>
<td>+358 40 573 4949</td>
<td>kaisu.heikonen@fta.fi</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>CEREMA- Center for Expertise & Engineering on Risks, Urban & Country Planning, Environment & Mobility</td>
<td>Mr. Jean-Charles CORNILLOU</td>
<td>Technopôle Brest Iroise, BP 5, 29280 Plouzané, France</td>
<td>+33 2 98 05 67 41</td>
<td>+33 2 98 05 67 67</td>
<td></td>
<td>jean-charles.cornillou@cerema.fr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. Hervé GUICHARD</td>
<td>Grande Arche de la Défense, Paroi Sud, 92055 La Défense Cedex, France</td>
<td>+33 1 40 81 22 71</td>
<td></td>
<td></td>
<td>herve.guichard@developpement-durable.gouv.fr</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Federal Waterway and Shipping Agency Germany</td>
<td>Mr. Christian HERRLICH</td>
<td>Wasser-und-Schifffartsamt Brunsbuttel, Alte Zentrale 4, 25541 Brunsbuettel, Germany</td>
<td>+49 4852 885 0</td>
<td>+49 4852 885 408</td>
<td>+49 160 9091 2436</td>
<td>Christian.Herrlich@wsv.bund.de</td>
<td></td>
</tr>
</tbody>
</table>
Germany

Federal Waterways and Shipping Administration
Mr. Sascha HEESCH
Germany
Phone
Fax
Mobile phone: Sascha. Heesh@wsv.bund.de.
e-mail (alternative):

Federal Waterways and Shipping Agency Germany
Mr. Michael HOPPE
Traffic Technologies Centre
Am Berg 3
56070 Koblenz
Germany
Phone + 49 261 9819 2221
Fax + 49 261 9819 2155
Mobile phone: e-mail (main): michael.hoppe@wsv.bund.de.
e-mail (alternative):

Federal Waterways and Shipping Agency Germany
Mr. Dirk ECKHOFF
Northern Region Office
Kiellinie 247
24106 Kiel
Germany
Phone + 49 431 3394 5702
Fax + 49 431 3394 6399
Mobile phone: e-mail (main): dirk.eckhoff@wsv.bund.de.
e-mail (alternative):

Germany

Federal Waterways and Shipping Agency Germany
Mr. Jan-Hendrik OLTmann
Generaldirektion WasserstraBen und Schifffahrt AuBenstelle Nord
Kiellinie 247
24106 Kiel
Germany
Phone + 49 431 3394 5701
Fax + 49 431 3394 6399
Mobile phone: +49 172 152 6928
e-mail (main): jan-hendrik.oltmann@wsv.bund.de.
e-mail (alternative):
German Aerospace Agency
Dr. Stefan GEWIES
Kalkhorstweg 53
17235 Neustrelitz
Germany
Phone +49 398 1480 187
Fax +49 398 1480 123
Mobile phone: stefan.gewies@dlr.de
e-mail (main): stefan.gewies@dlr.de.

Hochschule Wismar
Mr. Tom DEHMEL
Dept. of Maritime Studies
R.-Wagnerstrasse 31
D-18119 Warnemünde
Germany
Phone
Fax
Mobile phone:
e-mail (main): Tom.Dehmel@hs.wismar.de.
e-mail (alternative):

Germany OFFIS e.V.
Dr. Andre BOLLES
Ercherweg 2
26121 Oldenburg Germany
Phone +49 441 9722 206
Fax
Mobile phone:
e-mail (main): andre.bolles@offis.de.
e-mail (alternative):

Schnoor Industrielektronik GmbH & Co KG
Mr. Ralf OPPERMANN
Fehmarnstr 6
24782 Budelsdorf Germany
Phone +49 4331 34760
Fax +49 4331 347620
Mobile phone: +49 151 163557 14
e-mail (main): info@schnoor-ins.com.
e-mail (alternative):
IALA Workshop on Employing the e-Navigation Common Shore-Based System Architecture
Report

Signalis
Mr. Mathieu AILLERIE
9 rue Louis Rameau
BP 70101
95873 Bezons cedex
France
Phone +33 1 39 96 47 33
Fax +33 1 39 96 44 40
Mobile phone: +33 6 74 34 88 60
e-mail (main): Mathieu.Aillerie@signalis.com.
e-mail (alternative): matthieu.aillerie@gmail.com.

IALA
IALA Committee Secretary
Mr. Seamus DOYLE
10, rue des Gaudines
78100 Saint-Germain-en-Laye
France
Phone +33 1 3451 7001
Fax +33 1 34 51 82 05
Mobile phone: 353 87 98 77983
e-mail (main): seamus.doyle@iala-aism.org.
e-mail (alternative):

IALA Secretary-General
Mr. Gary PROSSER
10 rue des Gaudines
78100 Saint-Germain-en-Laye
France
Phone +33 1 34 51 70 01
Fax +33 1 34 51 82 05
Mobile phone:
e-mail (main): gary.prosser@iala-aism.org.
e-mail (alternative):

IMPA
Bundeslotsenkammer
Captain Michael HARTMANN
Theodorestr. 42-90 (Haus 1a)
22761 Hamburg
Germany
Phone +49 151 1530 9820
Fax +49 4852 3059
Mobile phone: +49 151 15309820
e-mail (main): hartmann@pilotervices.de
e-mail (alternative): office@impahq.org
Italy Selex ES - a Finmeccanica Company
Mr. Michele FIORINI
Via Tiburtina, km 12.400
00131 Roma Italy
Phone +39 06 4150 4505
Fax +39 06 4150 3728
Mobile phone:
e-mail (main): michele.fiorini@selex-es.com.
e-mail (alternative): fiorini.work@gmail.com.

Korea Korea Research Institute Ships & Ocean Engineering (KRISO)
(Republic of)
Dr. Deuk Jae CHO
32 Yuseong-daero ,1312 beon-gil
Yuseong-gu, Daehjeon 305-343
Republic of Korea
Phone +82 42 866 3683
Fax +82 10 8808 0928
Mobile phone: +82 42 866 3689
e-mail (main): djcho[kriso.re.kr.
e-mail (alternative):

Malaysia Light Dues Board, Marine Department Malaysia
Mr. Mohamad HALIM AHMED
Jalan Limbungan
42000 Port Klang
Selangor Darul Ehsan
Malaysia
Phone +603 33 46 77 77
Fax +603 31 68 50 20
Mobile phone: +6012 49 10 778
e-mail (main): halim@marine.gov.my.
e-mail (alternative):

Netherlands Netherlands Coastguard
Mr. Jan HAVERKORN
Rijkszee-en Marinehaven 1
1871ZZ Den Helder
Netherlands
Phone +31 223 658 312
Fax
Mobile phone:
e-mail (main): Eddy.Wisse@Kustwatch.nl.
e-mail (alternative):
Netherlands Coastguard
Mr. Eddy WISSE
Rijkszee- en Marinehaven 1
1871ZZ Den Helder

Netherlands
Phone +31 223 658 317
Fax
Mobile phone: e-mail (main): jan.havenkorn@kustwatch.nl.
e-mail (alternative):

Netherlands Ministry of Infrastructure and the Environment
Mr. Pieter PAAP
P O Box 5044
2600 HA Delft
Netherlands
Phone +31 88 798 22 22
Fax
Mobile phone: +31 6 466 36 190
e-mail (main): pieter.paap@rws.nl.
e-mail (alternative): pieter.l.paap@quicknet.nl.

Nigeria Nigerian Maritime Administration and Safety Agency
Mr. Leonard EKECHI
4 Burma Road
Apapa
Lagos 111
Nigeria
Phone +2348035672639
Fax
Mobile phone: e-mail (main): leoekachi@yahoo.com.
e-mail (alternative):

Norway Jeppesen GmbH
Mr. Michael BERGMANN
Frankfurter Str. 2a
63263 Neu-Isenburg
Germany
Phone +49 6102 507580
Fax +49 6102 507581
Mobile phone: +49 172 753 6379
e-mail (main): michael.bergmann@jeppesen.com.
e-mail (alternative):
Norway Kongsberg Seatex
Mr. Tony HAUGEN
Pirsenteret
7462 Trondheim Norway
Phone +47 73545581
Fax +47 73515020
Mobile phone: +47 90078741
e-mail (main): tony.haugen@kongsberg.com.
e-mail (alternative):

Norwegian Coastal Administration
Mr. Richard AASE
PO Box 1502
6025 Alesund Norway
Phone +47 52733315
Fax +47 527 33201
Mobile phone: +47 91866969
e-mail (main): richard.aase@kystverket.no.
e-mail (alternative):

Norway VisSim
Mr. Alexander LEGKIKH
Vollveien 5,
N-3183 Horten Norway
Phone +47 33 07 1890
Fax +47 33 07 18 99
Mobile phone: +47 97 42 78 11
e-mail (main): AL@vissim.no.
e-mail (alternative):

Poland Sprint S.A.
Mr. Krzysztof MELDALKA
Ul. Budowlanych 64E
PL80-298
Gdansk
Poland
Phone +46 668 48 54 47
Fax
Mobile phone:
e-mail (main): krzysztof.mendalka@sprint.pl.
e-mail (alternative): mendalka@gmail.com.
<table>
<thead>
<tr>
<th>Republic of Korea</th>
<th>Republic of Korea Maritime & Ocean University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Seojeong LEE</td>
<td>Dr. Seojeong LEE 727 Dongsan-dong Youngdo-gu Busan 606-791 Republic of Korea</td>
</tr>
<tr>
<td>Phone</td>
<td>+82 51 410 4578</td>
</tr>
<tr>
<td>Fax</td>
<td>+82 51 404 3986</td>
</tr>
<tr>
<td>Mobile phone</td>
<td>+82 11 217 4190</td>
</tr>
<tr>
<td>e-mail (main)</td>
<td>sjlee@kmou.ac.kr</td>
</tr>
<tr>
<td>e-mail (alternative):</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Republic of Korea</th>
<th>Republic of Korea Dong Seo University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Suhyun PARK</td>
<td>Prof. Dr. Suhyun PARK 47, Jurye-ro Sasang-gu Busan 617-716 Republic of Korea</td>
</tr>
<tr>
<td>Phone</td>
<td>+82 51 320 1723</td>
</tr>
<tr>
<td>Fax</td>
<td>+82 51 327 8955</td>
</tr>
<tr>
<td>Mobile phone</td>
<td>+82 10 9395 8326</td>
</tr>
<tr>
<td>e-mail (main)</td>
<td>subak@dongseo.ac.kr</td>
</tr>
<tr>
<td>e-mail (alternative):</td>
<td>subak63@gmail.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Republic of Korea</th>
<th>ETRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Song MOONSEUB</td>
<td>Mr. Song MOONSEUB 218 Gajeong-ro, Yuseung Gu Daejeon 305-700</td>
</tr>
<tr>
<td>Phone</td>
<td>+82 42 860 5025</td>
</tr>
<tr>
<td>Fax</td>
<td>+82 42 860 1085</td>
</tr>
<tr>
<td>Mobile phone</td>
<td>+82 10 4455 0533</td>
</tr>
<tr>
<td>e-mail (main)</td>
<td>leeki@etri.re.kr</td>
</tr>
<tr>
<td>e-mail (alternative):</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Republic of Korea</th>
<th>GMT Co Ltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Yongwon KIM</td>
<td>Mr. Yongwon KIM 7th Fl, Pangyo W-City, 9-22, Pangyo-ro 255 Beon-gil, Bundang-gu Seongnam-si, Gyeonggi-do 463-400 Republic of Korea</td>
</tr>
<tr>
<td>Phone</td>
<td>+82 2 488 6501</td>
</tr>
<tr>
<td>Fax</td>
<td>+82 2 488 6505</td>
</tr>
<tr>
<td>Mobile phone</td>
<td>+82 10 3039 3464</td>
</tr>
<tr>
<td>e-mail (main)</td>
<td>ywkim@gmtc.kr</td>
</tr>
<tr>
<td>e-mail (alternative):</td>
<td></td>
</tr>
</tbody>
</table>
Korea Maritime University
Prof. Yung-Ho YU
#1, Dongsam-dong
Yeongdo-gu
Busan 606-791
Republic of Korea
Phone +82 51 410 4345
Fax
Mobile phone: +82 10 4026 4345
e-mail (main): yungyu@kmou.ac.kr

Republic of Korea
Mokpo National Maritime University
Dr. Prof. Geonung KIM
91, Haeyangdaehak-ro
Mokpo-si, Jeollanam-do
530-729
Republic of Korea
Phone +82 61 240 7261
Fax +82 61 240 7255
Mobile phone: +82 10 8551 1909
e-mail (main): kgu@mmu.ac.kr

Shindong Digitech
Mr. Inhawn PARK
14, Miemsandan 3-Ro
Gangseo-Gu
Busan 618 220
Republic of Korea
Phone +82 51 4615210
Fax +82 51 417 5004
Mobile phone: +82 10 4425 7811
e-mail (main): ocean@shindong.com

Russia
Transas Technologies
Mr. Dmitry ROSTOPSHIN
Maly pr. V.O., 54-4
St. Petersburg
199178
Russia
Phone +7 812 325 3131
Fax +7 812 325 3132
Mobile phone: +7 911 297 7777
e-mail (main): Dmitry.Rostopshin@transas.com

Page 29 of 41
Scotland
Northern Lighthouse Board
Mr. Moray WADDELL
84 George Street
Edinburgh EH2 3DA Scotland
Phone + 44 131 473 3100
Fax + 44 131 220 2093
Mobile phone: +44 7768 177472
e-mail (main): morayw@nlb.org.uk,
e-mail (alternative):

Sweden
Swedish Maritime Administration
Mr. Fredrik KARLSSON
Coordinator Research and Innovation
Innovation and Development
Lindholmspiren 5
Sweden
Phone +46 10 47 84 632
Fax
Mobile phone:
e-mail (main): fredrik.karlsson@sjofartsverket.se.
e-mail (alternative):

Swedish Maritime Administration
Mr. Ulf SVEDBERG
Master Mariner
Research and Innovation
af Pontins väg 4
Sweden
Phone +46 10 478 4897
Fax +46 8 66 66 635
Mobile phone: +46 708 66 66 62
e-mail (main): ulf.svedberg@sjofartsverket.se.
e-mail (alternative):

Saudi Arabia
Saudi Arabia Ports Authorities
Capt Fahad Albatti
VTMIS Director (Dammamport)

Saudi Arabia
Phone +966 138583663
Fax +966 138583588
Mobile phone: +966 505840825
e-mail (main): f.albatti@ports.gov.sa.
e-mail (alternative):
USA

US Coast Guard
Mr. Robert McDermott
System Engineer
4000 Coast Guard Blvd,
Portsmouth, VA 23703
USA
Phone: +1 757 080 0790
Fax
Mobile phone: +1 540 080 0209
e-mail (main): Robert.j.mcdermott1@uscg.mil.

Five Rivers Services
Mr. Paul SMITH
6950 Harbour View Blvd
Suite C
Suffolk 23435
USA
Phone: +1 757 295 2032
Fax
Mobile phone: +1 757 478 3259
e-mail (main): paul.a.smith3@uscg.mil.
e-mail (alternative): paul.smith@fiveriversservices.com

Marine Management Consulting
Mr. Fred W. POT
6716, 47th Place SW
Seattle, WA 98136 USA
Phone
Fax
Mobile phone: +1 206 850 7664
e-mail (main): fpot@enavsolutions.org.
e-mail (alternative):

US Coast Guard
Mr. Robert McMcDERMOTT
4000 Coast Guard Blvd
Portsmouth, Virginia, 23703 USA
Phone: +1757 686 6790
Fax: +1 757 686 4018
Mobile phone: +1 540 686 0269
e-mail (main): robert.j.mcdermott1@uscg.mil
e-mail (alternative):
ANNEX E WORKING GROUP PARTICIPANTS

Working Group 1 The generic service model

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Organisation / Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan-Hendrik Oltmann (Chair)</td>
<td>WSV</td>
</tr>
<tr>
<td>2</td>
<td>Pieter Paap</td>
<td>Netherlands Administration, Netherlands</td>
</tr>
<tr>
<td>3</td>
<td>Eddy Wisse</td>
<td>Netherlands Coastguard, Netherlands</td>
</tr>
<tr>
<td>4</td>
<td>Jean-Charles Cornillou</td>
<td>CEREMA, France</td>
</tr>
<tr>
<td>5</td>
<td>Mathieu Aillerie</td>
<td>Signalis, France</td>
</tr>
<tr>
<td>6</td>
<td>Michael Hoppe</td>
<td>WSV</td>
</tr>
<tr>
<td>7</td>
<td>Dirk Eckhoff</td>
<td>WSV</td>
</tr>
<tr>
<td>8</td>
<td>Krzysztof Meldalka</td>
<td>Sprint SA, Poland</td>
</tr>
<tr>
<td>9</td>
<td>Moray Waddell</td>
<td>Northern Lighthouse Board, Scotland</td>
</tr>
<tr>
<td>10</td>
<td>Andre Bolles</td>
<td>Offis</td>
</tr>
<tr>
<td>11</td>
<td>Robert McDermott</td>
<td>USCG, USA</td>
</tr>
<tr>
<td>12</td>
<td>Fred Pot</td>
<td>Marine Management Consulting, USA</td>
</tr>
<tr>
<td>13</td>
<td>Mhamad Halim Ahmed</td>
<td>Light Dues Board, Marine Department, Malaysia</td>
</tr>
<tr>
<td>14</td>
<td>Alexander Legkikh</td>
<td>Vissim AS, Norway</td>
</tr>
<tr>
<td>15</td>
<td>Younwon Kim</td>
<td>GMT, South Korea</td>
</tr>
<tr>
<td>16</td>
<td>Geonung Kim</td>
<td>Korea Maritime University, South Korea</td>
</tr>
<tr>
<td>17</td>
<td>Jan Haverkovn</td>
<td>Netherland Coastguard, Netherlands</td>
</tr>
<tr>
<td>18</td>
<td>Herve Guichard</td>
<td>French sub-Directorate for Maritime Safety, France</td>
</tr>
<tr>
<td>19</td>
<td>Deuk Jae Cho</td>
<td>Korea Research Institute Ships & Ocean Engineering, South Korea</td>
</tr>
<tr>
<td>20</td>
<td>Kwangil Lee</td>
<td>ETRI, Republic of Korea</td>
</tr>
<tr>
<td>21</td>
<td>Suhyun Park</td>
<td>Dongsea University, Korea</td>
</tr>
<tr>
<td>22</td>
<td>Anjian Hou</td>
<td>Maritime Safety Administration, China</td>
</tr>
<tr>
<td>23</td>
<td>Stefan Gweies</td>
<td>DLR, Germany</td>
</tr>
</tbody>
</table>
Working Group 2 The service operation and service life-cycle management

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Organisation / Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Michele Fiorini (Chair)</td>
<td>Selex ES, Italy</td>
</tr>
<tr>
<td>2</td>
<td>Dmitry Rostopshin</td>
<td>Transas Technologies, Russia</td>
</tr>
<tr>
<td>3</td>
<td>Sascha Heesch</td>
<td>WSV, Germany</td>
</tr>
<tr>
<td>4</td>
<td>Christian Herrlich</td>
<td>WSV, Germany</td>
</tr>
<tr>
<td>5</td>
<td>Jafaar Hasan</td>
<td>MENAS, Bahrain</td>
</tr>
<tr>
<td>6</td>
<td>Makdi Al Mosawi</td>
<td>MENAS, Bahrain</td>
</tr>
<tr>
<td>7</td>
<td>Paul Smith</td>
<td>Five Rivers Services, USA</td>
</tr>
<tr>
<td>8</td>
<td>Ralf Oppermann</td>
<td>Schnoor Industrielektronik, Germany</td>
</tr>
<tr>
<td>9</td>
<td>Brian Johnson</td>
<td>Australian Maritime Services, Australia</td>
</tr>
<tr>
<td>10</td>
<td>Lzang Zhang</td>
<td>Maritime Safety Administration, China</td>
</tr>
<tr>
<td>11</td>
<td>Ulf Svedberg</td>
<td>Swedish Maritime Administration, Sweden</td>
</tr>
<tr>
<td>12</td>
<td>Fredrik Karlsson</td>
<td>Swedish Maritime Administration, Sweden</td>
</tr>
<tr>
<td>13</td>
<td>Leonard Ekechi</td>
<td>Nigeria</td>
</tr>
<tr>
<td>14</td>
<td>Inhwan Park</td>
<td>Shindong Digitech, Korea</td>
</tr>
<tr>
<td>15</td>
<td>Seojeong Lee</td>
<td>Korea Maritime and Ocean University, Korea</td>
</tr>
<tr>
<td>16</td>
<td>Yung-Ho Yu</td>
<td>Korea Maritime and Ocean University, Korea</td>
</tr>
</tbody>
</table>
ANNEX F WORKSHOP PROGRAMME

DAY 1 – Tuesday, 26 August 2014

1200 – 1300 Registration

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Chair:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300 - 1415</td>
<td>Session 1 – Opening of the Workshop</td>
<td>Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>1300-1310</td>
<td>Welcome from IALA</td>
<td>Gary Prosser</td>
</tr>
<tr>
<td>1310-1315</td>
<td>Administration & Safety Briefing</td>
<td>Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>1315-1330</td>
<td>Workshop’s aim & objectives</td>
<td>Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>1330-1350</td>
<td>Introduction to IMO e-Navigation and modernisation of GMDSS</td>
<td>Jean-Charles Cornillou</td>
</tr>
<tr>
<td>1350-1415</td>
<td>Introduction to input documents (pre-reading) and present status of CSSA</td>
<td>Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>1415 - 1445</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>1445 - 1630</td>
<td>Session 2 – The CSSA in its Context (User Interactions and relationship to other “e-Navigation pillars”)</td>
<td>Jean Charles Cornillou</td>
</tr>
<tr>
<td>1445 – 1505</td>
<td>Harmonization of shore-based User Requirements</td>
<td>Michele Fiorini</td>
</tr>
<tr>
<td>1505 – 1525</td>
<td>Shore-based (Unified) Operational Presentation Surface</td>
<td>Tom Dehmel</td>
</tr>
<tr>
<td>1525 – 1545</td>
<td>Relationship of CSSA with other “e-Navigation pillars” (MSPs, CMDS, PNT, Communications etc) and S-100 based “products”.</td>
<td>Yung-Ho Yu</td>
</tr>
<tr>
<td>1545 – 1605</td>
<td>The CSSA System Layout – introduction to the IALA Recommendation</td>
<td>Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>1605 – 1630</td>
<td>Discussion</td>
<td>Jean Charles Cornillou</td>
</tr>
<tr>
<td>1630 - 1700</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>1700 - 1800</td>
<td>Session 3 – The generic CSSA Service Model</td>
<td>Michele Fiorini</td>
</tr>
<tr>
<td>1700 – 1720</td>
<td>Introduction to the generic CSSA Service Model with special reference to IALA AIS Service (A-124)</td>
<td>Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>1720 – 1740</td>
<td>From model to procurement: necessary steps and relevant precautions</td>
<td>Yves Desnoes (Presenter Jean-Charles Cornillou)</td>
</tr>
<tr>
<td>1740 – 1800</td>
<td>Implementation Options: What UPnP (Universal Plug and Play) can contribute</td>
<td>Fred Pot</td>
</tr>
</tbody>
</table>

1800 – 1930

Welcome reception. Venue: Hotel Hafen Hamburg

Dress code: Business attire / Casual
<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>0900 - 1000</td>
<td>Session 4 - CSSA Service Model in Action; the German example (including lessons learned)</td>
<td>Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>0900 – 0920</td>
<td>Deploying a coastal-wide, multi-node, multi-service CSSA</td>
<td>Christian Herrlich</td>
</tr>
<tr>
<td>0920 – 0940</td>
<td>Organisational and Cost Implications of CSSA for the Administration</td>
<td>Dirk Eckhoff</td>
</tr>
<tr>
<td>1000 – 1020</td>
<td>Introduction to the Working Groups</td>
<td>Jan-Hendrik Oltmann / Michele Fiorini</td>
</tr>
<tr>
<td>1020 - 1050</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>1050 - 1230</td>
<td>Session 5 - Working Groups (WG)</td>
<td>Jean-Charles Cornillou</td>
</tr>
<tr>
<td>1050 – 1230</td>
<td>WG1- The generic service model</td>
<td>Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>1050 – 1230</td>
<td>WG2- The service operation and service life-cycle management</td>
<td>Michele Fiorini</td>
</tr>
<tr>
<td>1230 - 1330</td>
<td>Lunch and Group Photograph</td>
<td></td>
</tr>
<tr>
<td>1330 - 1530</td>
<td>Session 6 – Working Groups (WG) Continued</td>
<td>Jean-Charles Cornillou</td>
</tr>
<tr>
<td>1330 - 1530</td>
<td>WG1- The generic service model</td>
<td>Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>1330 - 1530</td>
<td>WG2- The service operation and service life-cycle management</td>
<td>Michele Fiorini</td>
</tr>
<tr>
<td>1530 - 1600</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>1600 - 1730</td>
<td>Session 7 – Working Groups (WG) continued</td>
<td>Jean-Charles Cornillou</td>
</tr>
<tr>
<td>1600 - 1730</td>
<td>WG1- The generic service model</td>
<td>Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>1600 - 1730</td>
<td>WG2- The service operation and service life-cycle management</td>
<td>Michele Fiorini</td>
</tr>
<tr>
<td>1730 – 1800</td>
<td>Meeting of Session Chairs</td>
<td>Day Session Chairs, Jan-Hendrik Oltmann, Seamus Doyle</td>
</tr>
</tbody>
</table>

1900 – 2200, Workshop dinner, Venue Blockbraeu

Dress code Casual
DAY 3 – Thursday, 28 August 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0800 - 1500</td>
<td>Technical Study Tour
 Tour to Kiel Canal Brunsbüttel site (including visit to the locks assembly, Central Control Centre for the German coastal-wide CSSA implementation, VTS centre(s) for Kiel Canal and/or for Elbe river Hamburg approach, Brunsbüttel node of the German CSSA implementation) to provide insights into a practical working application of the CSSA.</td>
</tr>
<tr>
<td>1500 – 1530</td>
<td>Break</td>
</tr>
<tr>
<td>1530 - 1730</td>
<td>Session 8 – Working Groups (WG) continued
 Co-ordinator: Jean-Charles Cornillou</td>
</tr>
<tr>
<td>1600 - 1730</td>
<td>WG1 - The generic service model
 Leader: Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td></td>
<td>WG2 - The service operation and service life-cycle management
 Leader: Michele Fiorini</td>
</tr>
<tr>
<td>1730-1800</td>
<td>Meeting of WG chairs
 WG chairs, Jean-Charles Cornillou, Seamus Doyle</td>
</tr>
</tbody>
</table>

Free evening

DAY 4 – Friday, 29 August 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0900 - 1030</td>
<td>Session 9 – Working Groups Continued</td>
</tr>
<tr>
<td>0900 - 1030</td>
<td>WG1 - The generic service model
 Leader: Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>0900 - 1030</td>
<td>WG2 - The service operation and service life-cycle management
 Leader: Michele Fiorini</td>
</tr>
<tr>
<td>1030 - 1100</td>
<td>Break</td>
</tr>
<tr>
<td>1100 - 1300</td>
<td>Session 10 – Plenary – Conclusions & Closing
 Chair: Jan-Hendrik Oltmann / Michele Fiorini</td>
</tr>
<tr>
<td>1100 – 1120</td>
<td>WG1 - Review of output and future work
 Respective WG-Leader Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>1120 – 1140</td>
<td>WG2 - Review of output and future work
 Respective WG-Leader Michele Fiorini</td>
</tr>
<tr>
<td>1140 – 1200</td>
<td>Plenary Discussion on WG findings: Synthesis
 Jan-Hendrik Oltmann</td>
</tr>
<tr>
<td>1200 – 1220</td>
<td>Conclusions from Workshop
 Seamus Doyle</td>
</tr>
<tr>
<td>1220 – 1240</td>
<td>Review of Workshop Report
 Seamus Doyle</td>
</tr>
<tr>
<td>1240 – 1300</td>
<td>Closing of the workshop
 Seamus Doyle</td>
</tr>
</tbody>
</table>
Together with the presentations made during sessions 2 – 4, the following papers were input to the workshop:

<table>
<thead>
<tr>
<th>Meeting</th>
<th>Agenda Item</th>
<th>Previous reference</th>
<th>Title / Author (if required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSSA1-</td>
<td>1</td>
<td></td>
<td>ENAV CSSA WS 2014-08 Papers' list rev (Rev 3)</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.1</td>
<td></td>
<td>Technical Programme (final version)</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.2</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.6</td>
<td>Main Draft IALA Recommendation On Generic Service Engineering Model V0-07 20140813 - Main Part</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.3</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.7</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 0 = References, Glossary of Terms, Abbreviations</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.4</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.7</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 1 = Basic Service Categories definitions and Minimum Set of Required Basic Services</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.5</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.7</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 2 = Data objects of a service and their properties (data model)</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.6</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.7</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 3 = Distribution model</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.7</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.8</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 4 = Interaction and data storage model</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.8</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 5 = Interfacing model</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.9</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 6 = Internal Time Latency model</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.10</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 7 = Internal Reliability model</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.11</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 8 = Test model</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.12</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 9 = Generic Functional description of the Logical Shore Station</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.13</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 10.1 = Generic Functional description of the Physical Layer as a whole</td>
</tr>
<tr>
<td>CSSA1-</td>
<td>2.14</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 10.2 = Generic Functional description of the Physical Shore Station</td>
</tr>
<tr>
<td>CSSA1</td>
<td>2.15</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 10.3 = Generic Functional description of the Physical Link Terminal Equipment</td>
</tr>
<tr>
<td>CSSA1</td>
<td>2.16</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 10.4 = Generic Functional description of the Physical Link Couplers</td>
</tr>
<tr>
<td>CSSA1</td>
<td>2.17</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 11 = Generic Functional description of the Service Management</td>
</tr>
<tr>
<td>CSSA1</td>
<td>2.18</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 12 = Site Co-Location Issues and On-Site Infrastructure Considerations</td>
</tr>
<tr>
<td>CSSA1</td>
<td>2.19</td>
<td>e-NAV14-12.2.10 + e-NAV14-12.2.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 13 = Recommendation regarding efficient operation and maintenance of a service</td>
</tr>
</tbody>
</table>
| CSSA1 | 2.20 | e-NAV14-12.2.10 | Draft IALA Recommendation on Generic Service Engineering Model - **Appendix 14 = Runtime configuration management of a service**

Supplementary documents provided before the Workshop

CSSA1	3.1	e-NAV14-17.1.5.2	Draft Revision Of Rec e-NAV-140 on e-Navigation Architecture-Shore Perspective(Ed2)
CSSA1	3.2	e-NAV14-17.1.5.1	IALA Recommendation on the IALA Common Shore-based System Architecture (CSSA) 20130925d, EditoriallyFixed2
CSSA1	3.3	e-NAV14-17.2.5.1	Relationship Between e-Navigation Technical Architecture Documents
CSSA1	3.4	e-NAV14-12.2.10	Report of Dublin meeting of e-NAV Committee WG3 & WG5 -Output1 (Report)
CSSA1	3.5		Workgroup-Coordination & assignment V4

Session papers

CSSA1	4.1.1		Intro to IMO e-Navigation & GMDSS modernisation - V4
CSSA1	4.2.1		Relationship e-Nav Pillars and S100 Products
CSSA1	4.3.1		From model to procurement - necessary steps and relevant precautions
ANNEX I WORKSHOP OUTPUT DOCUMENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSSA1- 5.1</td>
<td>Report of the IALA Workshop on Employing the e-Navigation Common Shore-Based System Architecture (CSSA)</td>
</tr>
<tr>
<td>CSSA1- 5.2</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model – Main Part</td>
</tr>
<tr>
<td>CSSA1- 5.3</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 0 = References, Glossary of Terms, Abbreviations</td>
</tr>
<tr>
<td>CSSA1- 5.4</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 1 = Basic Service Categories definitions and Minimum Set of Required Basic Services</td>
</tr>
<tr>
<td>CSSA1- 5.5</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 2 = Data objects of a service and their properties (data model)</td>
</tr>
<tr>
<td>CSSA1- 5.6</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 3 = Distribution model</td>
</tr>
<tr>
<td>CSSA1- 5.7</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 4 = Interaction and data storage model</td>
</tr>
<tr>
<td>CSSA1- 5.8</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 5 = Interfacing model</td>
</tr>
<tr>
<td>CSSA1- 5.9</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 6 = Internal Time Latency model</td>
</tr>
<tr>
<td>CSSA1- 5.10</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 7 = Internal Reliability model</td>
</tr>
<tr>
<td>CSSA1- 5.11</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 8 = Test model</td>
</tr>
<tr>
<td>CSSA1- 5.12</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 9 = Generic Functional description of the Logical Shore Station</td>
</tr>
<tr>
<td>CSSA1- 5.13</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 10.1 = Generic Functional description of the Physical Layer as a whole</td>
</tr>
<tr>
<td>CSSA1- 5.14</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 10.2 = Generic Functional description of the Physical Shore Station</td>
</tr>
<tr>
<td>CSSA1- 5.15</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 10.3 = Generic Functional description of the Physical Link Terminal Equipment</td>
</tr>
<tr>
<td>CSSA1- 5.16</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 10.4 = Generic Functional description of the Physical Link Couplers</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>CSSA1- 5.17</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 11 = Generic Functional description of the Service Management</td>
</tr>
<tr>
<td>CSSA1- 5.18</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 12 = Site Co-Location Issues and On-Site Infrastructure Considerations</td>
</tr>
<tr>
<td>CSSA1- 5.19</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 13 = Recommendation regarding efficient operation and maintenance of a service</td>
</tr>
<tr>
<td>CSSA1- 5.20</td>
<td>Draft IALA Recommendation on Generic Service Engineering Model - Appendix 14 = Runtime configuration management of a service</td>
</tr>
</tbody>
</table>
ANNEX J ACTIONS ARISING FROM THE WORKSHOP

Actions for the Secretariat
1. The IALA Secretariat is requested to forward the output documents to the 15th Session of the IALA ENAV Committee.

Actions for Delegates
2. Jan-Hendrik Oltmann is requested to editorially revise the Main Body of the draft Recommendation on CSSA generic service model as agreed and submit the revised draft Recommendation to ENAV15.